天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

運動想象腦電信號的特征提取算法研究

發(fā)布時間:2018-01-09 05:20

  本文關(guān)鍵詞:運動想象腦電信號的特征提取算法研究 出處:《安徽大學(xué)》2014年碩士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: 腦-機接口 運動想象 包絡(luò)提取 空域濾波


【摘要】:腦-機接口(Brain-computer interface, BCI)是一種不依賴外周神經(jīng)和肌肉等傳統(tǒng)信息通道的特殊人-機交互技術(shù)。利用該技術(shù),可實現(xiàn)大腦與外部設(shè)備之間的直接通信和控制。作為神經(jīng)活動的信息載體,頭皮腦電(EEG)信號能實時反映思維狀態(tài)的變化,并且容易檢測,因此在非植入式BCI系統(tǒng)中得到了廣泛應(yīng)用。然而由于大腦容積傳導(dǎo)效應(yīng)的存在,使得頭皮腦電的空間分辨率較低。同時,非神經(jīng)活動偽跡(如眼電、肌電、心電等)和環(huán)境噪聲也大大降低了有用信息的信噪比。因此,在基于EEG的BCI系統(tǒng)實現(xiàn)研究中,如何從多道頭皮腦電中獲取思維相關(guān)的真實神經(jīng)活動成分是非常關(guān)鍵的技術(shù)環(huán)節(jié)。 本文圍繞運動想象BCI系統(tǒng)的實現(xiàn),對EEG信號處理和特征提取新方法開展研究,主要做了以下工作: (1)設(shè)計了運動想象BCI的實驗范式,并采集了較豐富的運行想象EEG數(shù)據(jù),為后續(xù)研究打下了良好的基礎(chǔ)。 (2)針對任務(wù)相關(guān)EEG節(jié)律波的包絡(luò)檢測和運動想象分類問題,實現(xiàn)了四種包絡(luò)檢測方法:非線性能量算子(Nonlinear energy operator, NEO)、希爾伯特變換(Hilbert transform, HT)和兩種滑動窗獨立分量分析(Independent component analysis, ICA)算法。基于BCI2003競賽數(shù)據(jù),對四種包絡(luò)檢測算法在運動想象分類中的應(yīng)用效果進行了分析和比較。研究了干擾偽跡對包絡(luò)檢測精度的影響,并提出了相應(yīng)的改進思路。 (3)研究了結(jié)合時、頻、空域的空域濾波新方法。ICA和共同空間模式(Common spatial pattern, CSP)是兩種重要的空域濾波算法。兩種算法都是提取空域濾波器后對預(yù)處理后的腦電信號進行濾波,得到與神經(jīng)活動相關(guān)的隱含信號源。由于濾波器的設(shè)計原理的不同,最終所得隱含源的物理意義差別也很大。本文首先基于實測運動想象EEG數(shù)據(jù),分析和比較兩種空域濾波方法各自的性能特點。在此基礎(chǔ)上,給出了一種結(jié)合ICA和CSP的EEG特征提取新方法,實驗結(jié)果驗證了所提方法的有效性。
[Abstract]:Brain computer interface (Brain-computer interface BCI) is a special one - a traditional information channel is not dependent on the peripheral nerves and muscles of the machine interaction technology. Using this technology, can realize direct communication and control between brain and external devices. As the information carrier of neural activity, electroencephalography (EEG) signals the changes reflect the real state of mind, and can easily be detected, so it is widely used in non-invasive BCI system. However, the brain volume conduction effect, the spatial resolution of scalp EEG is low. At the same time, non neural activity artifacts (such as EOG, EMG, ECG etc) and environmental noise greatly reduce the useful information of the signal-to-noise ratio. Therefore, in the BCI implementation of EEG system based on the research, thinking how to get real neural activity in the correlated components from multichannel scalp EEG is very important in technology.
This paper focuses on the implementation of the motion picture BCI system, and studies the new methods of EEG signal processing and feature extraction. The following work is done:
(1) the experimental paradigm of motion imaginary BCI was designed, and the more abundant EEG data were collected, which laid a good foundation for the follow-up study.
(2) according to the envelope detection and motion tasks related to EEG rhythm wave imagery classification problem, realized four kinds of envelope detection methods: nonlinear energy operator (Nonlinear energy, operator, NEO), Hilbert (Hilbert transform, HT transform) and two kinds of sliding window independent component analysis (Independent component analysis, ICA BCI2003) algorithm. The competition based on the data of four kinds of envelope detection algorithms are analyzed and compared in the effect of motor imagery classification. Research on interference artifact effect on envelope detection accuracy, and proposes the corresponding improvement ideas.
(3) the combination of frequency,.ICA, a new method of spatial filtering and spatial common spatial pattern (Common spatial, pattern, CSP) are two important spatial filtering algorithm. The two algorithms are extracted from the spatial filter to filter the EEG signal preprocessing, associated with neural activity implied signal source. Due to the design principle of the filter, is also a great physical meaning resulting implicit difference. Source based on the EEG data measured imagine movement, performance analysis and comparison of two kinds of spatial filtering methods respectively. Based on this, a new method of combining ICA and CSP EEG feature extraction is presented, experimental the results verify the effectiveness of the proposed method.

【學(xué)位授予單位】:安徽大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TN911.7

【參考文獻】

相關(guān)期刊論文 前10條

1 張曉穎;馬書林;;數(shù)字包絡(luò)的實現(xiàn)[J];長春理工大學(xué)學(xué)報(自然科學(xué)版);2008年02期

2 但志平,王以治,黃艷,李保華;基于LPC倒譜參數(shù)和支持向量機技術(shù)的說話人識別系統(tǒng)[J];電聲技術(shù);2004年03期

3 程舒慧;吳小培;;基于滑動窗口的ICA算法動態(tài)分離胎兒心電[J];工業(yè)控制計算機;2011年06期

4 宋鴻冬,王亞利,夏紹瑋;基于支撐向量機的支票手寫體數(shù)字識別系統(tǒng)[J];計算機工程與應(yīng)用;2003年03期

5 袁曉;劉光遠;邱玉輝;虞厥邦;;數(shù)字語音信號包絡(luò)提取算法研究[J];計算機科學(xué);1998年03期

6 侯海良;羅良才;成運;陳潔;;基于盲源提取和希爾伯特變換的心音包絡(luò)提取[J];計算機仿真;2012年10期

7 郭曉靜,吳小培,張道信;ICA在思維腦電特征提取中的應(yīng)用[J];微機發(fā)展;2002年06期

8 王清波;代建華;章懷堅;鄭筱祥;;基于非線性能量算子和匹配濾波的鋒電位檢測與分類[J];儀器儀表學(xué)報;2011年01期

9 陳真誠;鐘靖;;腦電信號采集預(yù)處理電路設(shè)計[J];中國醫(yī)學(xué)物理學(xué)雜志;2009年04期

10 吳小培;葉中付;郭曉靜;張道信;唐希雯;;運動意識腦電的動態(tài)獨立分量分析[J];中國生物醫(yī)學(xué)工程學(xué)報;2007年06期

相關(guān)博士學(xué)位論文 前2條

1 吳畏;基于統(tǒng)計建模的多導(dǎo)聯(lián)腦電信號時空建模方法研究[D];清華大學(xué);2012年

2 施錦河;運動想象腦電信號處理與P300刺激范式研究[D];浙江大學(xué);2012年

,

本文編號:1400151

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/wltx/1400151.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f89f7***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com