線(xiàn)指數(shù)特征空間內(nèi)恒星光譜離群數(shù)據(jù)挖掘與分析
[Abstract]:Large-scale spectral survey will produce a large number of spectral data, which provides an opportunity to search for some strange and even unknown types of spectra. The study of these special celestial bodies is helpful to reveal the evolution of the universe and the origin of life, and the mining of outlier data of patrol data is helpful to the discovery of these special spectra. Using line index to reduce the dimension of spectral data can effectively solve the problem of high computational complexity in clustering analysis of high-dimensional spectral data while retaining as many spectral physical features as possible. A method of mining and analyzing massive star spectral outlier data based on line index feature is proposed. The Lick line index of star spectrum is taken as the feature of spectral data, and the method of clustering searching outlier data is used to search for outlier data in massive spectral patrol data. On this basis, the analysis method of outlier spectral data in the feature space of line index is given. The experimental results show that: (1) using line index as the characteristic value of the spectrum can quickly complete the outlier data mining of high dimensional spectral data, which can solve the problem of high complexity of high dimensional spectral data. (2) this method is an outlier data mining on clustering results, which can effectively mine a small number of emission stars, late M stars, extremely poor metal stars, missing data spectrum and so on. (3) the discovery rules of special stars in line exponential feature space can be obtained by mining outlier data in line exponential feature space. The outlier data mining and analysis method based on line index features proposed in this paper can be applied to the related research of sky patrol data.
【作者單位】: 山東大學(xué)(威海)機(jī)電與信息工程學(xué)院;中國(guó)科學(xué)院光學(xué)天文重點(diǎn)實(shí)驗(yàn)室國(guó)家天文臺(tái);
【分類(lèi)號(hào)】:P145.4
【相似文獻(xiàn)】
相關(guān)會(huì)議論文 前2條
1 吉根林;孫志揮;;分布式系統(tǒng)中離群數(shù)據(jù)間相似性挖掘[A];第二十一屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2004年
2 金義富;朱慶生;;離群數(shù)據(jù)關(guān)鍵域子空間實(shí)時(shí)搜索算法[A];第二十三屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2006年
相關(guān)碩士學(xué)位論文 前10條
1 潘險(xiǎn)險(xiǎn);基于實(shí)測(cè)運(yùn)行數(shù)據(jù)的風(fēng)電場(chǎng)仿真模型的研究[D];華北電力大學(xué);2015年
2 蔡博文;高維數(shù)據(jù)集中離群數(shù)據(jù)挖掘方法的研究[D];合肥工業(yè)大學(xué);2006年
3 蔣義勇;基于約束概念格的離群數(shù)據(jù)挖掘方法及應(yīng)用[D];太原科技大學(xué);2007年
4 孫偉偉;基于基尼指標(biāo)和子空間的離群數(shù)據(jù)挖掘方法研究[D];太原科技大學(xué);2012年
5 鐘洵;譜聚類(lèi)在離群數(shù)據(jù)挖掘中的應(yīng)用研究[D];重慶大學(xué);2010年
6 韓波;網(wǎng)格環(huán)境下的分布式離群數(shù)據(jù)挖掘方法研究[D];太原科技大學(xué);2010年
7 魏翔;基于離群數(shù)據(jù)挖掘的電子商務(wù)推薦系統(tǒng)研究[D];武漢紡織大學(xué);2013年
8 李永紅;相關(guān)子空間中的局部離群數(shù)據(jù)挖掘及應(yīng)用[D];太原科技大學(xué);2014年
9 紀(jì)勇;離群數(shù)據(jù)挖掘在犯罪通訊痕跡發(fā)現(xiàn)中的應(yīng)用[D];同濟(jì)大學(xué);2008年
10 劉書(shū)志;基于密度的局部離群數(shù)據(jù)挖掘方法的研究和改進(jìn)[D];重慶大學(xué);2014年
,本文編號(hào):2521607
本文鏈接:http://sikaile.net/kejilunwen/tianwen/2521607.html