一種折軸反射式天文光學(xué)望遠(yuǎn)鏡的裝調(diào)
[Abstract]:The aspherical surface has quadratic coefficient, so the imaging quality of the optical system can be improved by increasing the adjustment variables compared with the spherical surface, and various reflective optical systems with excellent performance and complexity can be designed. The use of aspherical surface can make the aperture of optical system do a lot, but it also increases the difficulty of optical system assembly. High precision aspheric optical system assembly is the key to the wide application of aspheric optical system. Based on a certain type of aspherical folded-trans RC remote system, this paper studies how to realize the high-precision assembly of the system, including the micro-stress assembly of aspherical reflector, the optical centralization technology of aspherical reflector, and so on. Vertical piercing system based on optical axis substitution design and computer-aided assembly technology based on interference self-precision test. Through the above-mentioned technical research and experiment, the precision installation of the optical system with 560mm focal length and 150mmRC aperture is realized. Finally, the wave aberration RMS of the system can reach 0.05位. This paper mainly completes several work 1. The relationship between system wave aberration and Zernike polynomial is established, which provides a theoretical basis for computer-aided assembly. By analyzing the misaligned aberrations of the RC system, it is concluded that the aberrations of multiple fields of view must be measured in the process of installation of the system to ensure the imaging quality of the RC system in the whole field of view. 2. This paper introduces two kinds of testing methods for aspherical mirror shape, which are non-image-free and compensation-free. By analyzing the influence of reflection mirror shape error on aberration of optical system, it is concluded that the precision of reflection mirror shape must be guaranteed when the mirror is assembled. The key technology of micro-stress assembly is studied according to the four support modes of mirror, and the key points for realizing micro-stress assembly under various support modes are put forward. 3. The key points for realizing micro-stress assembly under various support modes are put forward. According to the characteristics of the optical path and structure of the actual RC remote system, an ingenious optical axis replacement tool is designed and combined with the vertical centring technology to realize the high precision piercing work of the system. For the optical centering machining of aspheric mirror, the control requirements of the two-way index of the spherical image sloshing and the jump momentum of the reflector end face are adopted. Based on the interference self-quasi test, the misalignment direction and misalignment of the system are obtained by processing the information of the system wave aberration, and the system is adjusted accordingly.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TH751
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 齊立;;非球面反射鏡的測量[J];激光與光電子學(xué)進(jìn)展;1988年10期
2 劉曉博;非球面反射鏡的測量[J];光學(xué)技術(shù);1989年03期
3 趙洪范;;非球面反射鏡的復(fù)制[J];應(yīng)用光學(xué);1993年05期
4 孫國正;郭弘其;;大口徑凸非球面反射鏡的檢測方法[J];光學(xué)技術(shù);2006年S1期
5 王孝坤;;非零位檢測凸非球面反射鏡的研究[J];應(yīng)用光學(xué);2012年01期
6 王建國,潘君驊;非球面反射鏡的彈性變形加工[J];光學(xué)學(xué)報(bào);1985年10期
7 李俊峰;;碳化硅凸非球面反射鏡的加工與檢測[J];中國光學(xué);2014年02期
8 王能鶴,沃敏政,路敦武,王之江;用大口徑和大相對孔徑的非球面反射鏡拍攝一步彩虹全息圖[J];光學(xué)學(xué)報(bào);1982年01期
9 楊力,鄭耀,曾志革,姜文漢,袁家虎,伍凡;大型非球面反射鏡的柔性光學(xué)制造技術(shù)[J];光學(xué)技術(shù);2001年06期
10 宋淑梅,陳亞,呂學(xué)峰,姚春,張紅,姚國安;大口徑輕質(zhì)非球面反射鏡制造技術(shù)研究[J];光學(xué)技術(shù);2005年02期
相關(guān)會(huì)議論文 前7條
1 李銳鋼;;大口徑碳化硅非球面反射鏡的制造技術(shù)[A];第十四屆全國光學(xué)測試學(xué)術(shù)討論會(huì)論文(摘要集)[C];2012年
2 郭培基;余景池;;大口徑空間非球面反射鏡加工與檢測[A];中國光學(xué)學(xué)會(huì)2011年學(xué)術(shù)大會(huì)摘要集[C];2011年
3 王孝坤;;輕質(zhì)離軸碳化硅非球面反射鏡加工與檢測[A];中國光學(xué)學(xué)會(huì)2011年學(xué)術(shù)大會(huì)摘要集[C];2011年
4 王旭;;常壓電感耦合等離子體加工空間光學(xué)[A];中國空間科學(xué)學(xué)會(huì)2013年空間光學(xué)與機(jī)電技術(shù)研討會(huì)會(huì)議論文集[C];2013年
5 張峰;;空間離軸凸非球面反射鏡的加工與檢測[A];中國空間科學(xué)學(xué)會(huì)2013年空間光學(xué)與機(jī)電技術(shù)研討會(huì)會(huì)議論文集[C];2013年
6 周旭升;康念輝;李圣怡;;SiC非球面反射鏡的加工[A];提高全民科學(xué)素質(zhì)、建設(shè)創(chuàng)新型國家——2006中國科協(xié)年會(huì)論文集(下冊)[C];2006年
7 楊力;;大型光學(xué)科學(xué)的支柱——現(xiàn)代先進(jìn)光學(xué)制造技術(shù)[A];面向21世紀(jì)的科技進(jìn)步與社會(huì)經(jīng)濟(jì)發(fā)展(下冊)[C];1999年
相關(guān)博士學(xué)位論文 前2條
1 劉振宇;大口徑非球面反射鏡組合加工技術(shù)駐留時(shí)間算法研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2013年
2 殷龍海;大中型SiC非球面反射鏡確定性高效加工工藝的研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2015年
相關(guān)碩士學(xué)位論文 前3條
1 宋興;一種折軸反射式天文光學(xué)望遠(yuǎn)鏡的裝調(diào)[D];西安電子科技大學(xué);2014年
2 王玲;拼接式大口徑非球面反射鏡的檢測與監(jiān)測技術(shù)[D];哈爾濱工業(yè)大學(xué);2010年
3 鐘次恩;二次非球面反射鏡聚焦成像特性矢量理論研究[D];哈爾濱工業(yè)大學(xué);2012年
,本文編號:2468229
本文鏈接:http://sikaile.net/kejilunwen/tianwen/2468229.html