分段密度分布函數(shù)與太陽(yáng)解析解模型的研究
[Abstract]:Due to the slow evolution rate of the Sun at the stage of the principal ordered star, it can be assumed that it is a spherically symmetric hydrostatic equilibrium system. The physical quantity of the sun is only a function of the radial distance independent of the angular variables. On this basis, four differential equations describing the inner structure of the sun, namely, mass distribution equation, hydrostatic equilibrium equation, energy transport equation and energy equilibrium equation, can be introduced. The main task of studying the solar model is to solve the structural equations of the sun under certain boundary conditions. With the development of computer technology, numerical solutions of structural equations can be obtained effectively, but there are still some unsolved riddles about the sun that cannot be answered by numerical solutions. In order to make up for the shortage of numerical solution models, many analytical models of the sun have been proposed, and many meaningful results have been obtained. However, the outstanding problem of the existing analytical solution model is that the adjustable parameters are too few, the model is not flexible enough, and the result of calculation is too different from that of the numerical solution model. In addition, some analytical solution models (such as Stein model) assume the form of density distribution function directly, but can not explain why the density distribution function is chosen in this form. In this paper, a new solar analytical solution model is proposed. According to the different physical properties, the solar interior is divided into two different regions. The inner part is a nuclear reaction zone, and the outer one is a non-nuclear reaction region. Firstly, considering the requirements of physical laws, the characteristics of density distribution function are assumed, and the parameter 位 is introduced to indicate the relative difference between the density of the solar center and the density at the regional interface. The ratio of the radius of the nuclear reaction zone to the radius of the sun is expressed by introducing the parameter 偽. The density distribution function of the nuclear reaction region and the non-nuclear reaction region is expanded according to Taylor series, the first few terms of the expansion are taken, and the coefficients of the Taylor expansion can be determined according to the characteristics that the density distribution function must satisfy. Thus the concrete expression of density distribution function is naturally introduced. The essence of the new model is to simulate the density distribution function of the nuclear reaction region by quadratic function and the density distribution function of the non-nuclear reaction region by the first order function. If the density distribution function and the equation of state of the sun are known, the mass distribution equation and the hydrostatic equilibrium equation can be solved without considering the energy transport equation and the energy balance equation. Generally, the sun is regarded as an ideal gas, and its equation of state satisfies the equation of state of an ideal gas. The density distribution function of the sun is substituted into the mass distribution equation, the hydrostatic equilibrium equation and the ideal gas state equation in turn. Under certain boundary conditions, the analytical expressions of the internal pressure and temperature of the sun can be obtained. If the parameters 偽 and 位 are known, the specific values of the central density, central pressure and central temperature of the sun can be calculated. Finally, the influence of adjustable parameters on the thermodynamic parameters at the center of the sun and the advantages of the new model are discussed. Like other analytical solution models, the advantage of the new model is that the analytical expression of the thermodynamic parameters of the solar interior can be obtained without detailed investigation of the specific details of the nuclear reaction in the solar interior. By comparison, it is found that the solar analytical solution model of the piecewise density distribution function method is much better than the existing analytic solution model. The calculated solar center density, central pressure and center temperature can agree with the results of the analytical solution model. The calculation of solar luminosity can be greatly simplified and the analytical expression of energy in nuclear reaction region can also be given. The new model has more flexibility because of the introduction of two adjustable parameters, which is of great significance for us to study the physical processes inside the sun.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:P182
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱希睿;孟續(xù)軍;;改進(jìn)的含溫有界原子模型對(duì)金的電子物態(tài)方程的計(jì)算[J];物理學(xué)報(bào);2011年09期
2 晉守博;陳攀峰;;耗散稀薄氣體的動(dòng)力學(xué)模型的L~1漸近穩(wěn)定性[J];應(yīng)用數(shù)學(xué);2011年03期
3 ;[J];;年期
4 ;[J];;年期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
相關(guān)會(huì)議論文 前9條
1 張俞;洪廣文;馮衛(wèi)兵;;多模邊緣波能量分布研究[A];第十五屆中國(guó)海洋(岸)工程學(xué)術(shù)討論會(huì)論文集(中)[C];2011年
2 陸希成;李爽;王建國(guó);王光強(qiáng);韓峰;;微波混沌腔內(nèi)激勵(lì)電磁場(chǎng)空間分布的統(tǒng)計(jì)分析[A];2011年全國(guó)微波毫米波會(huì)議論文集(下冊(cè))[C];2011年
3 史靈衛(wèi);劉和光;許可;楊雙寶;徐曦煜;;延時(shí)多普勒雷達(dá)高度計(jì)在不同海況時(shí)的回波仿真[A];第十七屆中國(guó)遙感大會(huì)摘要集[C];2010年
4 黃瑋瓊;吳宣;;地震活動(dòng)性參數(shù)對(duì)城鎮(zhèn)危險(xiǎn)性估計(jì)的影響[A];中國(guó)地球物理學(xué)會(huì)年刊2002——中國(guó)地球物理學(xué)會(huì)第十八屆年會(huì)論文集[C];2002年
5 黃瑋瓊;吳宣;;地震統(tǒng)計(jì)時(shí)段對(duì)大城市危險(xiǎn)性估計(jì)的影響[A];中國(guó)地震學(xué)會(huì)第九次學(xué)術(shù)大會(huì)論文摘要集——紀(jì)念李善邦先生百年誕辰[C];2002年
6 尤紅建;;基于Edgeworth逼近的SAR變化檢測(cè)方法研究[A];《測(cè)繪通報(bào)》測(cè)繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年
7 陸志;連之偉;;地源熱泵有限長(zhǎng)線源模型簡(jiǎn)化負(fù)荷計(jì)算方法的修正[A];上海市制冷學(xué)會(huì)2007年學(xué)術(shù)年會(huì)論文集[C];2007年
8 陳劍平;王清;肖樹芳;黃亦群;;K-S檢驗(yàn)假設(shè)分布有效性在巖體工程中的應(yīng)用[A];第五屆全國(guó)工程地質(zhì)大會(huì)文集[C];1996年
9 楊松年;王鑫;趙軍;唐忠華;;城市功能型目標(biāo)偽裝與防護(hù)評(píng)價(jià)分析中的綜合效能[A];江蘇省系統(tǒng)工程學(xué)會(huì)第十一屆學(xué)術(shù)年會(huì)論文集[C];2009年
相關(guān)博士學(xué)位論文 前7條
1 史啟鴻;非對(duì)稱排它過程中的復(fù)雜相變研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2012年
2 付小雪;露天礦卡車實(shí)時(shí)調(diào)度決策系統(tǒng)空間運(yùn)算研究與應(yīng)用[D];中國(guó)礦業(yè)大學(xué)(北京);2012年
3 呂偉鋒;工藝波動(dòng)對(duì)納米尺度MOS集成電路性能影響模型與相關(guān)方法研究[D];浙江大學(xué);2012年
4 田紅亮;機(jī)械結(jié)構(gòu)固定結(jié)合部動(dòng)力學(xué)建模[D];華中科技大學(xué);2011年
5 張正江;過程系統(tǒng)的數(shù)據(jù)校正與參數(shù)估計(jì)[D];浙江大學(xué);2010年
6 王蕾;聚電解質(zhì)在均勻帶電平面上吸附的密度泛函研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年
7 田紅亮;機(jī)械結(jié)構(gòu)固定結(jié)合部虛擬材料的動(dòng)力學(xué)建模[D];華中科技大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 郝永亮;分段密度分布函數(shù)與太陽(yáng)解析解模型的研究[D];吉林大學(xué);2012年
2 謝健健;海洋表面波越過非理想海底地形時(shí)的解析模擬[D];廣西民族大學(xué);2011年
3 華海玉;基于模型實(shí)體規(guī)范的水環(huán)境解析解模型庫(kù)管理研究與應(yīng)用[D];重慶大學(xué);2010年
4 向遠(yuǎn)濤;有效中心對(duì)稱模型勢(shì)的統(tǒng)計(jì)熱力學(xué)與計(jì)算機(jī)模擬研究[D];中南大學(xué);2011年
5 李嬌;時(shí)域擴(kuò)散熒光層析技術(shù)基本原理與系統(tǒng)研究[D];天津大學(xué);2010年
6 劉昊;基于非能動(dòng)系統(tǒng)功能可靠性的火箭發(fā)動(dòng)機(jī)預(yù)冷系統(tǒng)設(shè)計(jì)參數(shù)優(yōu)化[D];上海交通大學(xué);2011年
7 朱紅偉;脈沖耦合神經(jīng)網(wǎng)絡(luò)在商標(biāo)圖像檢索中的應(yīng)用研究[D];云南大學(xué);2012年
8 董華山;重力作用下礦井突水?dāng)?shù)值模擬及其并行算法設(shè)計(jì)[D];西安建筑科技大學(xué);2011年
9 馬國(guó)宇;材料力學(xué)設(shè)計(jì)許用值統(tǒng)計(jì)方法研究及軟件開發(fā)[D];東北大學(xué);2010年
10 張李超;微尺度流體流動(dòng)和混合的LBM模擬[D];清華大學(xué);2010年
本文編號(hào):2357652
本文鏈接:http://sikaile.net/kejilunwen/tianwen/2357652.html