一類NS1-P黑洞的熵
發(fā)布時間:2018-11-13 06:43
【摘要】: 黑洞長久以來是理論物理學界感興趣的問題,并在最近取得了一些天文學上的觀察證據。黑洞的量子理論帶來了很多佯謬,如何去解決這些佯謬是極重要的,問題的解答將加深我們對量子引力的理解。弦理論是量子引力的一個備選方案,其中是沒有自由參數的,應該可以解決佯謬。如何應用弦理論來處理黑洞也是一個重要的課題。 我們要討論的是一類NS1-P黑洞的熵的問題。Bekenstein熵為Sbek=A/4G。如果我們不打算破壞熱力學第二定律,那么這個式子對黑洞就是成立的。這是我們的出發(fā)點。 ⅡB/ⅡA型超弦理論的低能有效作用量是ⅡB/ⅡA型超引力。在本文中我們要討論的黑洞是超引力的解。我們先對超弦,超引力,T對偶,S對偶Kaluza-Klein約化做一些介紹。因為我們只對玻色解感興趣,所以我們也只討論玻色解。我們希望找出一類NS1-P黑洞的熵并給出其物理上的解釋。 首先我們研究一下S對偶,通過S對偶我們可以給出NSl-P系統與D1-P系統作用量是等價的。NS1-P黑洞是NS1超引力的低能有效作用量的解。于是我們可以的知NS1-P黑洞和D1-P黑洞是等價的。而熵在S對偶下是不發(fā)生改變的。如果我們能解出NS1-P黑洞的熵那么我們也就知道了與之對偶的D1-P黑洞的熵。我們嘗試通過約化IIB 10維NS1-P系統來得到5維黑洞。并將弦標架轉為Einstein標架來求黑洞的熵。我們知道在弦理論中動量和荷存在著等價性,通過計算我們期望能得出NS1-P系統熵和荷之間的關系。
[Abstract]:Black holes have long been of interest to theoretical physics and have recently yielded some astronomical observational evidence. The quantum theory of black holes has brought many paradoxes, how to solve these paradoxes is extremely important, the solution of the problem will deepen our understanding of quantum gravity. String theory is an alternative to quantum gravity, in which there are no free parameters, which should solve the paradox. How to use string theory to deal with black holes is also an important subject. We are going to discuss the entropy of a kind of NS1-P black hole. Bekenstein entropy is Sbek=A/4G. If we do not intend to break the second law of thermodynamics, then this formula is true for black holes. This is our starting point. The low-energy effective action of type 鈪,
本文編號:2328305
[Abstract]:Black holes have long been of interest to theoretical physics and have recently yielded some astronomical observational evidence. The quantum theory of black holes has brought many paradoxes, how to solve these paradoxes is extremely important, the solution of the problem will deepen our understanding of quantum gravity. String theory is an alternative to quantum gravity, in which there are no free parameters, which should solve the paradox. How to use string theory to deal with black holes is also an important subject. We are going to discuss the entropy of a kind of NS1-P black hole. Bekenstein entropy is Sbek=A/4G. If we do not intend to break the second law of thermodynamics, then this formula is true for black holes. This is our starting point. The low-energy effective action of type 鈪,
本文編號:2328305
本文鏈接:http://sikaile.net/kejilunwen/tianwen/2328305.html