天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 天文學(xué)論文 >

引力與空間層展

發(fā)布時(shí)間:2018-08-13 16:23
【摘要】:黑洞熱力學(xué)的發(fā)現(xiàn)揭示了引力系統(tǒng)與熱力學(xué)系統(tǒng)存在深刻的聯(lián)系,物理學(xué)家開始猜測(cè),引力可能是一種層展現(xiàn)象而非基本作用力。1995年Jacobson通過(guò)局域Rindler視界上的克勞修斯關(guān)系導(dǎo)出了愛(ài)因斯坦場(chǎng)方程更是增強(qiáng)了這個(gè)信心。另一方面,通過(guò)對(duì)黑洞熵的研究,Susskind和t Hoof提出了全息原理,它認(rèn)為一個(gè)d+1維的引力系統(tǒng)自由度與其d維邊界上非引力系統(tǒng)自由度存在對(duì)應(yīng)。全息原理被認(rèn)為可能是量子引力的一個(gè)基本原理,同時(shí)它實(shí)際上也是層展觀點(diǎn)的依據(jù)之一。最近,Padmanabhan將引力的層展觀點(diǎn)應(yīng)用到宇宙學(xué),并提出全息均分原理,它認(rèn)為宇宙的膨脹源于層展空間的表面自由度與體自由度之差,將全息均分應(yīng)用到FRW宇宙的Hubble視界上可以得到標(biāo)準(zhǔn)的Friedmann方程。通過(guò)對(duì)Padmanabhan提出的空間層展方程的不同修正,這也可以推廣到高維愛(ài)因斯坦引力、Gauss-Bonnet引力和更普遍的Lovelock引力。另外,這種不同的修正也可以通過(guò)將Padmanabhan的方程中表面自由度與體自由度之差代之為它的函數(shù),這被稱為更普遍的全息均分律。然而這些推廣只能得到空間平直下FRW宇宙的Friedmann方程,為了能導(dǎo)出任意空間曲率Friedmann方程,還需要修改方程并將之應(yīng)用到表觀視界上。通過(guò)具體分析這種新的空間層展觀點(diǎn)以及上述各類推廣,我們發(fā)現(xiàn)實(shí)際上這些不同的修正可以用一個(gè)統(tǒng)一的方程描述,而它們實(shí)際上是該方程的特例。進(jìn)一步我們將該方程應(yīng)用到f(R)引力和變形Horava-Lifshitz引力下FRW宇宙,并得出層展觀點(diǎn)下修正的動(dòng)力學(xué)演化方程。在相應(yīng)的極限條件下,n=3,f(R)=R,以及ω→0,這些動(dòng)力學(xué)方程能退回到廣義相對(duì)論下的情形,表現(xiàn)出很好的一致性。另一方面,由于在高維愛(ài)因斯坦引力、Gauss-Bonnet引力和Lovelock引力下所作推廣中,應(yīng)用在Hubble視界上的全息均分原理得不出任意空間曲率的Friedmann方程,我們重新推導(dǎo)了在表觀視界下全息均分原理的表達(dá)形式,并成功得到任意空間曲率的Friedmann方程。我們認(rèn)為,這種差別可能是因?yàn)樵谶@些推廣的引力理論下全息均分原理實(shí)際上適用于表觀視界而不再適用于ubble視界。最后,女口Padmanabhan所言,新的層展觀點(diǎn)給宇宙學(xué)提供了新的范式,我們考察了空間層展觀點(diǎn)下de Sitter宇宙,在全息均分原理滿足的情況下,得到狀態(tài)參數(shù)ω和能量密度非常強(qiáng)的限制形式。由于在宇宙早期暴漲和動(dòng)力學(xué)暗能量下的晚期宇宙都可能形成deSitter相,我們認(rèn)為這將對(duì)暴漲模型和暗能量模型帶來(lái)約束。
[Abstract]:The discovery of the thermodynamics of black holes reveals a deep connection between gravitational and thermodynamic systems, and physicists begin to speculate, Gravity may be a layer representation rather than a basic force. In 1995 Jacobson derived the Einstein field equation from the local Rindler horizon. On the other hand, by studying the entropy of black hole, Susskind and t Hoof put forward the holographic principle, which holds that the degree of freedom of a d-1-dimensional gravitational system corresponds to the degree of freedom of a non-gravitational system on its d-dimensional boundary. The holographic principle is considered to be a basic principle of quantum gravity, and it is actually one of the bases of the theory of layering. Padmanabhan has recently applied the idea of stratification of gravity to cosmology, and has proposed the principle of holographic equalization, which holds that the expansion of the universe is due to the difference between surface and volume degrees of freedom. The standard Friedmann equation can be obtained by applying the holographic equalization to the Hubble horizon of the FRW universe. By modifying the spatial layer expansion equation proposed by Padmanabhan, it can also be extended to the high-dimensional Einstein gravitational Gauss-Bonnet gravitation and the more general Lovelock gravitation. In addition, the difference between the surface and volume degrees of freedom in the Padmanabhan equation can be replaced by its function, which is called the more general holographic equalization law. However, these generalizations can only obtain the Friedmann equation of the FRW universe under space flatness. In order to derive the Friedmann equation of arbitrary space curvature, it is necessary to modify the equation and apply it to the apparent horizon. Through the analysis of this new view of spatial layering and the generalization mentioned above, we find that in fact these different modifications can be described by a unified equation, and they are in fact special cases of the equation. Furthermore, we apply the equation to the FRW universe under f (R) gravity and deformed Horava-Lifshitz gravity, and obtain the modified dynamic evolution equation from the viewpoint of stratification. Under the corresponding limit conditions, the dynamic equations can be retreated to the general relativistic case and show good consistency. On the other hand, because of the generalization of the high dimensional Einstein gravity Gauss-Bonnet gravity and Lovelock gravity, the holographic equalization principle applied to the Hubble horizon can not obtain the Friedmann equation of arbitrary space curvature. We rederive the expression of the holographic equalization principle under the apparent horizon and successfully obtain the Friedmann equation of arbitrary space curvature. We believe that this difference may be due to the fact that the holographic equalization principle is actually applicable to the apparent horizon but no longer to the ubble horizon under these generalized gravitational theories. Finally, according to Padmanabhan, the new view of layering provides a new paradigm for cosmology. We examine the de Sitter universe in the view of spatial layering, where the holographic equalization principle is satisfied. The limiting form of state parameter 蠅 and energy density is obtained. Since the deSitter phase may be formed in the late universe under both the early cosmic explosion and the dynamic dark energy, we believe that this will bring constraints to both the skyrocketing model and the dark energy model.
【學(xué)位授予單位】:蘭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:P145.8;P131

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張鎮(zhèn)九;;關(guān)于黑洞熱力學(xué)的四個(gè)定律[J];華中師院學(xué)報(bào)(自然科學(xué)版);1982年01期

2 朱彤;;普通熱力學(xué)四定律與黑洞熱力學(xué)四定律[J];中國(guó)醫(yī)藥指南;2009年03期

3 閆榮義;黑洞熱力學(xué)研究的歷史及現(xiàn)狀[J];南都學(xué)壇;1999年03期

4 鄧昭鏡;;關(guān)于黑洞熱力學(xué)第0定律[J];西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年05期

5 鄧昭鏡;負(fù)能譜中的黑洞熱力學(xué)[J];西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年03期

6 趙仁,張麗春;黑洞熱力學(xué)關(guān)系式[J];雁北師范學(xué)院學(xué)報(bào);2002年05期

7 汪定雄;熵能比存在上限嗎?[J];湖北民族學(xué)院學(xué)報(bào)(自然科學(xué)版);1990年01期

8 鄧昭鏡;J D Bekenstein黑洞熱力學(xué)理論的內(nèi)在桎梏[J];西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年01期

9 程素君;翟忠旭;劉文彪;;靜態(tài)球?qū)ΨQ黑洞熱力學(xué)與愛(ài)因斯坦場(chǎng)方程[J];大學(xué)物理;2011年01期

10 郭守元;;黑洞熱力學(xué)與Hawking輻射[J];山東教育學(xué)院學(xué)報(bào);1996年02期

相關(guān)博士學(xué)位論文 前2條

1 楊學(xué)軍;黑洞熱力學(xué)的相關(guān)研究及時(shí)空的Killing約化[D];北京師范大學(xué);2003年

2 賀鋒;關(guān)于黑洞熵和穿越蟲洞的一些研究[D];北京師范大學(xué);2002年

相關(guān)碩士學(xué)位論文 前6條

1 艾穩(wěn)元;引力與空間層展[D];蘭州大學(xué);2015年

2 李守龍;ω-變形的Kaluza-Klein超引力理論中的靜態(tài)雙荷AdS黑洞熱力學(xué)研究[D];西華師范大學(xué);2015年

3 李子敬;黑洞熱力學(xué)與η-ξ時(shí)空[D];大連理工大學(xué);2005年

4 劉小芳;AdS黑洞熱力學(xué)中的臨界現(xiàn)象[D];湖南師范大學(xué);2014年

5 吳廣;時(shí)空熱力學(xué)與熵[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年

6 于添翼;類Lifshitz引力的Lovelock修正[D];寧波大學(xué);2011年

,

本文編號(hào):2181534

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/tianwen/2181534.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶14c46***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com