引力與空間層展
[Abstract]:The discovery of the thermodynamics of black holes reveals a deep connection between gravitational and thermodynamic systems, and physicists begin to speculate, Gravity may be a layer representation rather than a basic force. In 1995 Jacobson derived the Einstein field equation from the local Rindler horizon. On the other hand, by studying the entropy of black hole, Susskind and t Hoof put forward the holographic principle, which holds that the degree of freedom of a d-1-dimensional gravitational system corresponds to the degree of freedom of a non-gravitational system on its d-dimensional boundary. The holographic principle is considered to be a basic principle of quantum gravity, and it is actually one of the bases of the theory of layering. Padmanabhan has recently applied the idea of stratification of gravity to cosmology, and has proposed the principle of holographic equalization, which holds that the expansion of the universe is due to the difference between surface and volume degrees of freedom. The standard Friedmann equation can be obtained by applying the holographic equalization to the Hubble horizon of the FRW universe. By modifying the spatial layer expansion equation proposed by Padmanabhan, it can also be extended to the high-dimensional Einstein gravitational Gauss-Bonnet gravitation and the more general Lovelock gravitation. In addition, the difference between the surface and volume degrees of freedom in the Padmanabhan equation can be replaced by its function, which is called the more general holographic equalization law. However, these generalizations can only obtain the Friedmann equation of the FRW universe under space flatness. In order to derive the Friedmann equation of arbitrary space curvature, it is necessary to modify the equation and apply it to the apparent horizon. Through the analysis of this new view of spatial layering and the generalization mentioned above, we find that in fact these different modifications can be described by a unified equation, and they are in fact special cases of the equation. Furthermore, we apply the equation to the FRW universe under f (R) gravity and deformed Horava-Lifshitz gravity, and obtain the modified dynamic evolution equation from the viewpoint of stratification. Under the corresponding limit conditions, the dynamic equations can be retreated to the general relativistic case and show good consistency. On the other hand, because of the generalization of the high dimensional Einstein gravity Gauss-Bonnet gravity and Lovelock gravity, the holographic equalization principle applied to the Hubble horizon can not obtain the Friedmann equation of arbitrary space curvature. We rederive the expression of the holographic equalization principle under the apparent horizon and successfully obtain the Friedmann equation of arbitrary space curvature. We believe that this difference may be due to the fact that the holographic equalization principle is actually applicable to the apparent horizon but no longer to the ubble horizon under these generalized gravitational theories. Finally, according to Padmanabhan, the new view of layering provides a new paradigm for cosmology. We examine the de Sitter universe in the view of spatial layering, where the holographic equalization principle is satisfied. The limiting form of state parameter 蠅 and energy density is obtained. Since the deSitter phase may be formed in the late universe under both the early cosmic explosion and the dynamic dark energy, we believe that this will bring constraints to both the skyrocketing model and the dark energy model.
【學(xué)位授予單位】:蘭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:P145.8;P131
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張鎮(zhèn)九;;關(guān)于黑洞熱力學(xué)的四個(gè)定律[J];華中師院學(xué)報(bào)(自然科學(xué)版);1982年01期
2 朱彤;;普通熱力學(xué)四定律與黑洞熱力學(xué)四定律[J];中國(guó)醫(yī)藥指南;2009年03期
3 閆榮義;黑洞熱力學(xué)研究的歷史及現(xiàn)狀[J];南都學(xué)壇;1999年03期
4 鄧昭鏡;;關(guān)于黑洞熱力學(xué)第0定律[J];西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年05期
5 鄧昭鏡;負(fù)能譜中的黑洞熱力學(xué)[J];西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年03期
6 趙仁,張麗春;黑洞熱力學(xué)關(guān)系式[J];雁北師范學(xué)院學(xué)報(bào);2002年05期
7 汪定雄;熵能比存在上限嗎?[J];湖北民族學(xué)院學(xué)報(bào)(自然科學(xué)版);1990年01期
8 鄧昭鏡;J D Bekenstein黑洞熱力學(xué)理論的內(nèi)在桎梏[J];西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年01期
9 程素君;翟忠旭;劉文彪;;靜態(tài)球?qū)ΨQ黑洞熱力學(xué)與愛(ài)因斯坦場(chǎng)方程[J];大學(xué)物理;2011年01期
10 郭守元;;黑洞熱力學(xué)與Hawking輻射[J];山東教育學(xué)院學(xué)報(bào);1996年02期
相關(guān)博士學(xué)位論文 前2條
1 楊學(xué)軍;黑洞熱力學(xué)的相關(guān)研究及時(shí)空的Killing約化[D];北京師范大學(xué);2003年
2 賀鋒;關(guān)于黑洞熵和穿越蟲洞的一些研究[D];北京師范大學(xué);2002年
相關(guān)碩士學(xué)位論文 前6條
1 艾穩(wěn)元;引力與空間層展[D];蘭州大學(xué);2015年
2 李守龍;ω-變形的Kaluza-Klein超引力理論中的靜態(tài)雙荷AdS黑洞熱力學(xué)研究[D];西華師范大學(xué);2015年
3 李子敬;黑洞熱力學(xué)與η-ξ時(shí)空[D];大連理工大學(xué);2005年
4 劉小芳;AdS黑洞熱力學(xué)中的臨界現(xiàn)象[D];湖南師范大學(xué);2014年
5 吳廣;時(shí)空熱力學(xué)與熵[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年
6 于添翼;類Lifshitz引力的Lovelock修正[D];寧波大學(xué);2011年
,本文編號(hào):2181534
本文鏈接:http://sikaile.net/kejilunwen/tianwen/2181534.html