爆發(fā)日珥和太陽(yáng)耀斑的觀測(cè)研究
本文選題:日珥爆發(fā)的臨界高度 + 耀斑的極紫外后相。 參考:《中國(guó)科學(xué)技術(shù)大學(xué)》2013年博士論文
【摘要】:爆發(fā)日珥和耀斑是太陽(yáng)大氣中常見(jiàn)的活動(dòng)現(xiàn)象,它們都與日冕物質(zhì)拋射(CME)有著緊密的聯(lián)系,其中爆發(fā)日珥可以被看做是CME在低日冕處的活動(dòng)表現(xiàn),而耀斑常常伴隨有CME的爆發(fā),因而對(duì)這兩種事件的研究不單能夠幫助理解太陽(yáng)大氣活動(dòng)中的基本物理過(guò)程,還能提高對(duì)CME產(chǎn)生機(jī)制的認(rèn)知,從而提高空間天氣預(yù)報(bào)的準(zhǔn)確度。本文主要以分析觀測(cè)資料為主結(jié)合理論分析,對(duì)爆發(fā)日珥和耀斑這兩種現(xiàn)象分別進(jìn)行了研究。 1,統(tǒng)計(jì)分析了日珥爆發(fā)或失穩(wěn)的臨界高度: 首先引用了一套可以從太陽(yáng)極紫外(EUV)觀測(cè)圖像中自動(dòng)識(shí)別和追蹤日珥形態(tài)和運(yùn)動(dòng)學(xué)特征的系統(tǒng)SLIPCAT(Solar LImb Prominences CAtcherTracker),然后從SLIPCAT對(duì)STEREO(日地關(guān)系觀測(cè)臺(tái),Solar TErrestrial RElations Observatory)B星在2007年7月到2009年12月期間的觀測(cè)圖像的應(yīng)用運(yùn)行結(jié)果中,挑選了362個(gè)追蹤較好的且高度達(dá)到或者超過(guò)了0.2個(gè)太陽(yáng)半徑的日珥事件來(lái)進(jìn)行統(tǒng)計(jì)研究,結(jié)果發(fā)現(xiàn)在所統(tǒng)計(jì)的日珥事件中受擾動(dòng)日珥(Disrupted Prominences,DPs)占了約71%,而DPs中有42%爆發(fā)失敗,同時(shí)有89%的事件經(jīng)歷了一個(gè)突然解穩(wěn)(Sudden Destabilization,SD)的過(guò)程。通過(guò)對(duì)DPs的詳細(xì)分析,我們得到了一下幾個(gè)結(jié)論:大部分DPs的臨界高度范圍為0.06~0.14個(gè)太陽(yáng)半徑,同時(shí)存在著兩個(gè)最有可能的臨界高度,分別為0.13和0.19個(gè)太陽(yáng)半徑,即當(dāng)日珥達(dá)到這兩個(gè)高度時(shí),平衡很有可能遭到破壞,日珥將變得不再穩(wěn)定;爆發(fā)日珥(Eruptive Prominences,EPs)的爆發(fā)速度存在著上限,且這個(gè)上限速度會(huì)隨著高度和質(zhì)量的增加以?xún)缏傻男问浇档?爆發(fā)日珥的動(dòng)能也存在著上限,它與日珥的臨界高度成反比;穩(wěn)定日珥(Stable Prominences,SPs)要比DPs長(zhǎng)且重,但它們的高度往往不會(huì)超過(guò)0.4個(gè)太陽(yáng)半徑;有62%的EPs與CME相關(guān),但是與CME相關(guān)和無(wú)關(guān)的EPs在SLIPCAT得到的表觀參數(shù)中并無(wú)明顯的區(qū)別。 2,研究了耀斑極紫外后相輻射的日面來(lái)源以及物理機(jī)制: 按照耀斑的軟X射線通量的觀測(cè)曲線,耀斑一般被認(rèn)為有兩個(gè)階段:一是快速上升的脈沖相,又被稱(chēng)為上升相;二是緩慢下降的恢復(fù)相,又被稱(chēng)為下降相或漸變相。近年來(lái),一個(gè)新的階段,耀斑的極紫外后相,在SDO(太陽(yáng)動(dòng)力學(xué)觀測(cè)臺(tái),Solar Dynamic Observatory)上天以后被發(fā)現(xiàn)了,它的觀測(cè)表現(xiàn)為耀斑主相過(guò)后的極紫外觀測(cè)曲線上會(huì)出現(xiàn)另一個(gè)大的峰值,為了探尋EUV后相的來(lái)源,我們利用AIA(太陽(yáng)大氣成像儀,Atmospheric Imaging Assembly)的多波段高分辨率圖像觀測(cè)資料對(duì)兩個(gè)有著EUV后相的耀斑事件,2010年10月16日的M2.9級(jí)耀斑和2011年2月18日的M1.4級(jí)耀斑,進(jìn)行了詳細(xì)的分析,并得到了以下幾個(gè)結(jié)論:1,EUV后相的輻射并非來(lái)自于耀斑環(huán),而是來(lái)自于比耀斑環(huán)更高、更大的同一活動(dòng)區(qū)中的環(huán)系統(tǒng),并把它稱(chēng)之為耀斑后相環(huán);2,耀斑的后相環(huán)與主相環(huán)所經(jīng)歷的熱過(guò)程不同,耀斑主相環(huán)幾乎同時(shí)在各個(gè)溫度譜線的觀測(cè)中增亮顯現(xiàn),而后相環(huán)會(huì)依次出現(xiàn)在溫度由高往低的各個(gè)波段觀測(cè)圖中,延遲時(shí)間超過(guò)一個(gè)小時(shí);3,耀斑的后相環(huán)與主相環(huán)在磁結(jié)構(gòu)上是相連的,它們共同組成了一個(gè)非對(duì)稱(chēng)的磁四極場(chǎng)位形;4,AIA的紫外波段觀測(cè)顯示后相環(huán)靠近主相環(huán)的足點(diǎn)與主相環(huán)的足點(diǎn)幾乎同時(shí)增亮,而遠(yuǎn)離主相環(huán)的足點(diǎn)的增亮則有大概一分鐘的延遲。從這些結(jié)果中,我們認(rèn)為耀斑的后相與主相之間存在著一個(gè)因果關(guān)系:當(dāng)主相環(huán)發(fā)生重聯(lián)時(shí),推動(dòng)環(huán)上的磁拱上升而造成磁拱與后相環(huán)的重聯(lián),從而加熱了后相環(huán),重聯(lián)結(jié)束后,主相環(huán)迅速冷卻,而后相環(huán)則經(jīng)歷了一個(gè)長(zhǎng)時(shí)間的緩慢冷卻過(guò)程,最終形成了觀測(cè)到的EUV后相。 3,提出了一種新的耀斑分類(lèi)方法并建立了耀斑列表: 從GOES(近地同步環(huán)境監(jiān)測(cè)衛(wèi)星,Geostationary Operational Environ-ment Satellite)軟X射線通量觀測(cè)曲線出發(fā),結(jié)合SDO的觀測(cè)資料,我們提出了一種新的耀斑分類(lèi)方法,主要把耀斑分為四類(lèi),分別為:1,標(biāo)準(zhǔn)爆發(fā)事件(Standard Eruptive,S-E),即指有CME伴隨的,在GOES觀測(cè)曲線上表現(xiàn)為長(zhǎng)恢復(fù)相的,足點(diǎn)亮帶可觀測(cè)到明顯分離的,在日冕圖像中可觀測(cè)到上升磁環(huán)的,在EUV的觀測(cè)曲線上隨著譜線對(duì)應(yīng)溫度的降低而峰值響應(yīng)有所延遲的,滿(mǎn)足標(biāo)準(zhǔn)耀斑模型的耀斑事件;2,標(biāo)準(zhǔn)束縛事件(Standard Confined,S-C),指無(wú)CME伴隨的,在GOES曲線上的恢復(fù)相很短的,足點(diǎn)觀測(cè)未見(jiàn)分離的,日冕圖像中觀測(cè)不到上升磁環(huán)的,EUV觀測(cè)曲線中未見(jiàn)峰值隨溫度降低而延遲的耀斑事件;3,非標(biāo)準(zhǔn)爆發(fā)事件(Non-Standard Eruptive,NS-E),指有著CME伴隨,但不符合一項(xiàng)或多項(xiàng)標(biāo)準(zhǔn)爆發(fā)事件的其他觀測(cè)特征的耀斑事件,部分這類(lèi)事件是會(huì)伴隨有EUV后相;4,非標(biāo)準(zhǔn)束縛事件(Non-Standard Confined, NS-C),沒(méi)有CME伴隨,但其他的觀測(cè)特征與標(biāo)準(zhǔn)不爆發(fā)事件不符,這類(lèi)事件往往在GOES曲線上也表現(xiàn)為長(zhǎng)的恢復(fù)相,在EVE觀測(cè)中會(huì)出現(xiàn)極紫外后相,且與S-E事件相同,在日面邊緣處能在高溫譜線上觀測(cè)到磁繩結(jié)構(gòu)的增亮和上升,但不同的是,在NS-C事件中出現(xiàn)的磁繩會(huì)在上升過(guò)程中達(dá)到新的平衡,從而沒(méi)有真正爆發(fā)出去。由這個(gè)新的分類(lèi)出發(fā),我們給出了從2010年5月到2011年12月期間發(fā)生的所有M級(jí)和X級(jí)耀斑事件的列表,表中給出了各個(gè)耀斑的觀測(cè)特征和歸屬類(lèi)別。
[Abstract]:Eruption prominences and flares are common phenomena in the solar atmosphere. They are closely related to coronal mass ejection (CME). The eruption prominence can be seen as the activity of CME in the low corona, and the flare often accompanied by an outbreak of CME, so the study of these two events can not only help to understand the solar atmosphere. The basic physical process in motion can improve the cognition of the CME production mechanism and improve the accuracy of the spatial weather forecast. This paper mainly studies the two phenomena of the eruption of prominence and flare based on the analysis of the observation data and the theoretical analysis.
1, the critical height of prominence outburst or instability is analyzed statistically.
A system SLIPCAT (Solar LImb Prominences CAtcherTracker), which can automatically identify and trace the morphological and kinematic characteristics of prominence from the EUV observation image, is first introduced, and then from SLIPCAT to STEREO (daily earth relation Observatory, Solar TErrestrial RElations Observatory) from July 2007 to December 2009 In the application of the observed images, 362 prominence events, which are well tracked and high or more than 0.2 solar radii, are selected for statistical research. The results show that the Disrupted Prominences (DPs) accounts for about 71% in the prominence events, while 42% in DPs failed, and 89% of the events were at the same time. The part experienced a process of Sudden Destabilization (SD). Through a detailed analysis of DPs, we got a few conclusions: the critical height of most DPs is 0.06 to 0.14 solar radii, and there are two most likely critical heights, 0.13 and 0.19 solar radii respectively, when the prominence is reached. At these two heights, the balance is likely to be destroyed and the prominence will become no longer stable; the explosion rate of the burst prominence (Eruptive Prominences, EPs) has an upper limit, and the upper limit speed will decrease with the increase of the power law as the height and mass increase, and the kinetic energy of the eruption prominence also has an upper limit, which is at the critical height of the prominence. Inverse ratio; the stable prominence (Stable Prominences, SPs) is longer and heavier than DPs, but their height is often not more than 0.4 solar radii; 62% of EPs is associated with CME, but there is no obvious difference in the apparent parameters of SLIPCAT obtained by CME related and unrelated EPs.
2, the source and physical mechanism of the extreme ultraviolet phase radiation of flares are studied.
According to the observation curve of the soft X ray flux of the flare, the flare is generally considered to have two stages: one is the fast rising phase of the pulse, and also called the ascending phase; the two is a slow descending phase, which is also called a descending phase or a gradual phase. In recent years, a new phase, the extreme ultraviolet phase of the flare, is in the SDO (Solar Dynamics Observatory, Solar D) Ynamic Observatory) was discovered later in the sky, and its observation showed that there would be another big peak on the extreme ultraviolet observation curve after the main phase of the flare. In order to explore the source of the EUV phase, we used the AIA (solar atmospheric imager, Atmospheric Imaging Assembly) and the multiband high resolution image observation data for the two EUV. The flare events of the posterior phase, the M2.9 grade flare of October 16, 2010 and the M1.4 grade flare in February 18, 2011 are analyzed in detail, and the following conclusions are obtained: 1, the radiation of the EUV posterior phase is not from the flare ring, but from the ring system in the same active area, which is higher and larger than the flare ring, and is called the post flare phase. 2, the heat process of the rear phase ring of the flare is different from that of the main phase ring. The main phase ring of the flare is brightened almost at the same time in the observation of each temperature spectrum. The back phase ring will appear in each wave band of the temperature from high to low. The delay time is more than one hour; 3, the rear phase ring of the flare and the main phase ring are on the magnetic structure. Together, they constitute an asymmetrical magnetic quadrupole shape; 4, the observation of the AIA's ultraviolet band shows that the foot point near the main phase ring is almost simultaneously brightened by the foot point of the main phase ring, and the brightness of the foot point far away from the main phase ring is about one minute delay. From these results, we think the post phase of the flare and the main phase There is a causal relationship between the reconnection of the magnetic arch on the driving ring and the reconnection between the magnetic arch and the rear phase ring when the main phase ring is reconnected, thus heating the back phase ring, and after the reconnection ends, the main phase ring rapidly cooled, and the back phase ring experienced a long slow cooling process and finally formed the observed EUV phase.
3, a new classification method for flares is proposed and a list of flares is established.
Starting from the soft X ray flux observation curve of GOES (near earth synchronous environment monitoring satellite, Geostationary Operational Environ-ment Satellite), combined with the observation data of SDO, we propose a new method for the classification of flares, which are divided into four categories: 1, standard explosive events (Standard Eruptive, S-E), that is, CME accompanied The GOES observation curve shows a long recovery phase. The foot bright band can be observed to be clearly separated. The rising magnetic ring can be observed in the coronal image. The peak response of the EUV is delayed with the decrease of the spectrum line corresponding to the temperature of the line, and the flare event of the standard flare mold type is satisfied; 2, the standard binding event (Standard Confi). Ned, S-C), refers to the non CME accompanying, the recovery phase on the GOES curve is very short, the foot point observation has not been separated, the coronal image does not observe the rising magnetic ring, the EUV observation curve does not have the flare event delayed by the temperature decreasing in the EUV observation curve; 3, the non standard explosion event (Non-Standard Eruptive, NS-E), refers to the CME adjoint, but does not conform to one item. Some of the other observational flare events of a number of standard outbreaks, some of which are accompanied by a EUV phase; 4, the non standard binding event (Non-Standard Confined, NS-C), without CME, but other observational features are inconsistent with the standard non explosive events, and these events are often shown as a long recovery phase on the GOES curve, in E In the VE observation, the ultra violet phase will appear, and the same as the S-E event, the intensity and the rise of the magnetic rope structure can be observed on the high temperature line at the edge of the surface. But the magnetic rope in the NS-C event will reach a new balance in the process of rising, which is not really exploded. A list of all M and X flare events from May 2010 to December 2011 is presented. The observational characteristics and attribution categories of each flare are given in the table.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類(lèi)號(hào)】:P182.5
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 景海榮,楊志良;等離子體中磁場(chǎng)的本性[J];北京師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年03期
2 丁宗華;吳健;孫樹(shù)計(jì);陳金松;班盼盼;;汶川大地震前電離層參量的變化特征與分析[J];地球物理學(xué)報(bào);2010年01期
3 王家龍,孫靜蘭;太陽(yáng)活動(dòng)及其對(duì)地球環(huán)境的影響[J];第四紀(jì)研究;2002年06期
4 郝娟;張枚;;用Filter Ratio方法計(jì)算太陽(yáng)日冕溫度[J];德州學(xué)院學(xué)報(bào);2008年04期
5 溫衛(wèi)斌,李懷峰,孫才紅,金聲震;空間太陽(yáng)望遠(yuǎn)鏡太陽(yáng)導(dǎo)行鏡原理樣機(jī)的研制[J];光電工程;2005年03期
6 章敏;王東;;太陽(yáng)過(guò)渡區(qū)紫外光譜的觀測(cè)與診斷[J];光譜學(xué)與光譜分析;2011年12期
7 玄偉佳;王東光;鄧元勇;張志勇;孫英姿;;光線追跡法在雙折射濾光器誤差分析中的應(yīng)用[J];光學(xué)精密工程;2008年05期
8 肖江;胡柯良;林佳本;申基;鄧元勇;;用大面陣CCD實(shí)現(xiàn)全日面像自動(dòng)導(dǎo)行[J];光學(xué)精密工程;2008年09期
9 王宇舟,金聲震;空間太陽(yáng)望遠(yuǎn)鏡偏振光測(cè)量技術(shù)[J];光學(xué)技術(shù);2004年02期
10 賈志宏;金聲震;耿立紅;王景宇;;空間太陽(yáng)望遠(yuǎn)鏡星載圖像壓縮系統(tǒng)的研究[J];光學(xué)技術(shù);2006年S1期
相關(guān)博士學(xué)位論文 前10條
1 陳彩霞;基于源區(qū)位置統(tǒng)計(jì)結(jié)果的日冕物質(zhì)拋射觀測(cè)特征研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年
2 王璞;太陽(yáng)耀斑過(guò)程中的磁場(chǎng)變化研究[D];南京大學(xué);2011年
3 張紹華;并行自適應(yīng)技術(shù)在背景太陽(yáng)風(fēng)及快速磁場(chǎng)重聯(lián)數(shù)值模擬中的應(yīng)用研究[D];中國(guó)科學(xué)院研究生院(空間科學(xué)與應(yīng)用研究中心);2011年
4 楊利平;背景太陽(yáng)風(fēng)的三維數(shù)值模擬研究[D];中國(guó)科學(xué)院研究生院(空間科學(xué)與應(yīng)用研究中心);2011年
5 何宏青;太陽(yáng)高能粒子在三維行星際磁場(chǎng)中傳播的研究[D];中國(guó)科學(xué)院研究生院(空間科學(xué)與應(yīng)用研究中心);2011年
6 楊林;極紫外太陽(yáng)望遠(yuǎn)鏡的檢測(cè)方法研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2011年
7 敦金平;太陽(yáng)活動(dòng)區(qū)磁場(chǎng)測(cè)量和非勢(shì)特征研究論文[D];中國(guó)科學(xué)院研究生院(云南天文臺(tái));2002年
8 羅慶宇;太陽(yáng)日冕波動(dòng)加熱機(jī)制研究[D];中國(guó)科學(xué)院研究生院(空間科學(xué)與應(yīng)用研究中心);2003年
9 陳波;空間極紫外太陽(yáng)望遠(yuǎn)鏡光學(xué)性能研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2003年
10 占臘生;太陽(yáng)長(zhǎng)期活動(dòng)特征的研究[D];中國(guó)科學(xué)院研究生院(云南天文臺(tái));2003年
相關(guān)碩士學(xué)位論文 前10條
1 王勃;光敏晶體管自動(dòng)日照計(jì)技術(shù)研究[D];南京理工大學(xué);2011年
2 章磊;太陽(yáng)活動(dòng)和EUV波現(xiàn)象研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年
3 石紅雨;等離子體波與波相互作用下的譜線加寬[D];南京師范大學(xué);2002年
4 張健;利用GPS對(duì)太陽(yáng)耀斑電離層響應(yīng)的監(jiān)測(cè)和研究[D];中國(guó)科學(xué)院研究生院(測(cè)量與地球物理研究所);2002年
5 周桂萍;日冕物質(zhì)拋射和太陽(yáng)表面活動(dòng)的關(guān)系[D];安徽大學(xué);2003年
6 鐘曉春;太陽(yáng)射電爆發(fā)纖維精細(xì)結(jié)構(gòu)的觀測(cè)與理論研究[D];西南交通大學(xué);2003年
7 梁紅飛;1981年太陽(yáng)西邊緣耀斑后環(huán)物理量場(chǎng)的研究[D];中國(guó)科學(xué)院研究生院(云南天文臺(tái));2003年
8 蘇宙平;空間極紫外望遠(yuǎn)鏡在軌校準(zhǔn)技術(shù)研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2004年
9 尉敏;太陽(yáng)輻射全光譜模擬人工光源的實(shí)驗(yàn)研究[D];西安建筑科技大學(xué);2004年
10 趙海娟;太陽(yáng)活動(dòng)預(yù)報(bào)[D];中國(guó)科學(xué)院研究生院(云南天文臺(tái));2004年
,本文編號(hào):2057981
本文鏈接:http://sikaile.net/kejilunwen/tianwen/2057981.html