爆發(fā)日珥和太陽耀斑的觀測研究
本文選題:日珥爆發(fā)的臨界高度 + 耀斑的極紫外后相; 參考:《中國科學技術大學》2013年博士論文
【摘要】:爆發(fā)日珥和耀斑是太陽大氣中常見的活動現(xiàn)象,它們都與日冕物質(zhì)拋射(CME)有著緊密的聯(lián)系,其中爆發(fā)日珥可以被看做是CME在低日冕處的活動表現(xiàn),而耀斑常常伴隨有CME的爆發(fā),因而對這兩種事件的研究不單能夠幫助理解太陽大氣活動中的基本物理過程,還能提高對CME產(chǎn)生機制的認知,從而提高空間天氣預報的準確度。本文主要以分析觀測資料為主結合理論分析,對爆發(fā)日珥和耀斑這兩種現(xiàn)象分別進行了研究。 1,統(tǒng)計分析了日珥爆發(fā)或失穩(wěn)的臨界高度: 首先引用了一套可以從太陽極紫外(EUV)觀測圖像中自動識別和追蹤日珥形態(tài)和運動學特征的系統(tǒng)SLIPCAT(Solar LImb Prominences CAtcherTracker),然后從SLIPCAT對STEREO(日地關系觀測臺,Solar TErrestrial RElations Observatory)B星在2007年7月到2009年12月期間的觀測圖像的應用運行結果中,挑選了362個追蹤較好的且高度達到或者超過了0.2個太陽半徑的日珥事件來進行統(tǒng)計研究,結果發(fā)現(xiàn)在所統(tǒng)計的日珥事件中受擾動日珥(Disrupted Prominences,DPs)占了約71%,而DPs中有42%爆發(fā)失敗,同時有89%的事件經(jīng)歷了一個突然解穩(wěn)(Sudden Destabilization,SD)的過程。通過對DPs的詳細分析,我們得到了一下幾個結論:大部分DPs的臨界高度范圍為0.06~0.14個太陽半徑,同時存在著兩個最有可能的臨界高度,分別為0.13和0.19個太陽半徑,即當日珥達到這兩個高度時,平衡很有可能遭到破壞,日珥將變得不再穩(wěn)定;爆發(fā)日珥(Eruptive Prominences,EPs)的爆發(fā)速度存在著上限,且這個上限速度會隨著高度和質(zhì)量的增加以冪律的形式降低,爆發(fā)日珥的動能也存在著上限,它與日珥的臨界高度成反比;穩(wěn)定日珥(Stable Prominences,SPs)要比DPs長且重,但它們的高度往往不會超過0.4個太陽半徑;有62%的EPs與CME相關,但是與CME相關和無關的EPs在SLIPCAT得到的表觀參數(shù)中并無明顯的區(qū)別。 2,研究了耀斑極紫外后相輻射的日面來源以及物理機制: 按照耀斑的軟X射線通量的觀測曲線,耀斑一般被認為有兩個階段:一是快速上升的脈沖相,又被稱為上升相;二是緩慢下降的恢復相,又被稱為下降相或漸變相。近年來,一個新的階段,耀斑的極紫外后相,在SDO(太陽動力學觀測臺,Solar Dynamic Observatory)上天以后被發(fā)現(xiàn)了,它的觀測表現(xiàn)為耀斑主相過后的極紫外觀測曲線上會出現(xiàn)另一個大的峰值,為了探尋EUV后相的來源,我們利用AIA(太陽大氣成像儀,Atmospheric Imaging Assembly)的多波段高分辨率圖像觀測資料對兩個有著EUV后相的耀斑事件,2010年10月16日的M2.9級耀斑和2011年2月18日的M1.4級耀斑,進行了詳細的分析,并得到了以下幾個結論:1,EUV后相的輻射并非來自于耀斑環(huán),而是來自于比耀斑環(huán)更高、更大的同一活動區(qū)中的環(huán)系統(tǒng),并把它稱之為耀斑后相環(huán);2,耀斑的后相環(huán)與主相環(huán)所經(jīng)歷的熱過程不同,耀斑主相環(huán)幾乎同時在各個溫度譜線的觀測中增亮顯現(xiàn),而后相環(huán)會依次出現(xiàn)在溫度由高往低的各個波段觀測圖中,延遲時間超過一個小時;3,耀斑的后相環(huán)與主相環(huán)在磁結構上是相連的,它們共同組成了一個非對稱的磁四極場位形;4,AIA的紫外波段觀測顯示后相環(huán)靠近主相環(huán)的足點與主相環(huán)的足點幾乎同時增亮,而遠離主相環(huán)的足點的增亮則有大概一分鐘的延遲。從這些結果中,我們認為耀斑的后相與主相之間存在著一個因果關系:當主相環(huán)發(fā)生重聯(lián)時,推動環(huán)上的磁拱上升而造成磁拱與后相環(huán)的重聯(lián),從而加熱了后相環(huán),重聯(lián)結束后,主相環(huán)迅速冷卻,而后相環(huán)則經(jīng)歷了一個長時間的緩慢冷卻過程,最終形成了觀測到的EUV后相。 3,提出了一種新的耀斑分類方法并建立了耀斑列表: 從GOES(近地同步環(huán)境監(jiān)測衛(wèi)星,Geostationary Operational Environ-ment Satellite)軟X射線通量觀測曲線出發(fā),結合SDO的觀測資料,我們提出了一種新的耀斑分類方法,主要把耀斑分為四類,分別為:1,標準爆發(fā)事件(Standard Eruptive,S-E),即指有CME伴隨的,在GOES觀測曲線上表現(xiàn)為長恢復相的,足點亮帶可觀測到明顯分離的,在日冕圖像中可觀測到上升磁環(huán)的,在EUV的觀測曲線上隨著譜線對應溫度的降低而峰值響應有所延遲的,滿足標準耀斑模型的耀斑事件;2,標準束縛事件(Standard Confined,S-C),指無CME伴隨的,在GOES曲線上的恢復相很短的,足點觀測未見分離的,日冕圖像中觀測不到上升磁環(huán)的,EUV觀測曲線中未見峰值隨溫度降低而延遲的耀斑事件;3,非標準爆發(fā)事件(Non-Standard Eruptive,NS-E),指有著CME伴隨,但不符合一項或多項標準爆發(fā)事件的其他觀測特征的耀斑事件,部分這類事件是會伴隨有EUV后相;4,非標準束縛事件(Non-Standard Confined, NS-C),沒有CME伴隨,但其他的觀測特征與標準不爆發(fā)事件不符,這類事件往往在GOES曲線上也表現(xiàn)為長的恢復相,在EVE觀測中會出現(xiàn)極紫外后相,且與S-E事件相同,在日面邊緣處能在高溫譜線上觀測到磁繩結構的增亮和上升,但不同的是,在NS-C事件中出現(xiàn)的磁繩會在上升過程中達到新的平衡,從而沒有真正爆發(fā)出去。由這個新的分類出發(fā),我們給出了從2010年5月到2011年12月期間發(fā)生的所有M級和X級耀斑事件的列表,表中給出了各個耀斑的觀測特征和歸屬類別。
[Abstract]:Eruption prominences and flares are common phenomena in the solar atmosphere. They are closely related to coronal mass ejection (CME). The eruption prominence can be seen as the activity of CME in the low corona, and the flare often accompanied by an outbreak of CME, so the study of these two events can not only help to understand the solar atmosphere. The basic physical process in motion can improve the cognition of the CME production mechanism and improve the accuracy of the spatial weather forecast. This paper mainly studies the two phenomena of the eruption of prominence and flare based on the analysis of the observation data and the theoretical analysis.
1, the critical height of prominence outburst or instability is analyzed statistically.
A system SLIPCAT (Solar LImb Prominences CAtcherTracker), which can automatically identify and trace the morphological and kinematic characteristics of prominence from the EUV observation image, is first introduced, and then from SLIPCAT to STEREO (daily earth relation Observatory, Solar TErrestrial RElations Observatory) from July 2007 to December 2009 In the application of the observed images, 362 prominence events, which are well tracked and high or more than 0.2 solar radii, are selected for statistical research. The results show that the Disrupted Prominences (DPs) accounts for about 71% in the prominence events, while 42% in DPs failed, and 89% of the events were at the same time. The part experienced a process of Sudden Destabilization (SD). Through a detailed analysis of DPs, we got a few conclusions: the critical height of most DPs is 0.06 to 0.14 solar radii, and there are two most likely critical heights, 0.13 and 0.19 solar radii respectively, when the prominence is reached. At these two heights, the balance is likely to be destroyed and the prominence will become no longer stable; the explosion rate of the burst prominence (Eruptive Prominences, EPs) has an upper limit, and the upper limit speed will decrease with the increase of the power law as the height and mass increase, and the kinetic energy of the eruption prominence also has an upper limit, which is at the critical height of the prominence. Inverse ratio; the stable prominence (Stable Prominences, SPs) is longer and heavier than DPs, but their height is often not more than 0.4 solar radii; 62% of EPs is associated with CME, but there is no obvious difference in the apparent parameters of SLIPCAT obtained by CME related and unrelated EPs.
2, the source and physical mechanism of the extreme ultraviolet phase radiation of flares are studied.
According to the observation curve of the soft X ray flux of the flare, the flare is generally considered to have two stages: one is the fast rising phase of the pulse, and also called the ascending phase; the two is a slow descending phase, which is also called a descending phase or a gradual phase. In recent years, a new phase, the extreme ultraviolet phase of the flare, is in the SDO (Solar Dynamics Observatory, Solar D) Ynamic Observatory) was discovered later in the sky, and its observation showed that there would be another big peak on the extreme ultraviolet observation curve after the main phase of the flare. In order to explore the source of the EUV phase, we used the AIA (solar atmospheric imager, Atmospheric Imaging Assembly) and the multiband high resolution image observation data for the two EUV. The flare events of the posterior phase, the M2.9 grade flare of October 16, 2010 and the M1.4 grade flare in February 18, 2011 are analyzed in detail, and the following conclusions are obtained: 1, the radiation of the EUV posterior phase is not from the flare ring, but from the ring system in the same active area, which is higher and larger than the flare ring, and is called the post flare phase. 2, the heat process of the rear phase ring of the flare is different from that of the main phase ring. The main phase ring of the flare is brightened almost at the same time in the observation of each temperature spectrum. The back phase ring will appear in each wave band of the temperature from high to low. The delay time is more than one hour; 3, the rear phase ring of the flare and the main phase ring are on the magnetic structure. Together, they constitute an asymmetrical magnetic quadrupole shape; 4, the observation of the AIA's ultraviolet band shows that the foot point near the main phase ring is almost simultaneously brightened by the foot point of the main phase ring, and the brightness of the foot point far away from the main phase ring is about one minute delay. From these results, we think the post phase of the flare and the main phase There is a causal relationship between the reconnection of the magnetic arch on the driving ring and the reconnection between the magnetic arch and the rear phase ring when the main phase ring is reconnected, thus heating the back phase ring, and after the reconnection ends, the main phase ring rapidly cooled, and the back phase ring experienced a long slow cooling process and finally formed the observed EUV phase.
3, a new classification method for flares is proposed and a list of flares is established.
Starting from the soft X ray flux observation curve of GOES (near earth synchronous environment monitoring satellite, Geostationary Operational Environ-ment Satellite), combined with the observation data of SDO, we propose a new method for the classification of flares, which are divided into four categories: 1, standard explosive events (Standard Eruptive, S-E), that is, CME accompanied The GOES observation curve shows a long recovery phase. The foot bright band can be observed to be clearly separated. The rising magnetic ring can be observed in the coronal image. The peak response of the EUV is delayed with the decrease of the spectrum line corresponding to the temperature of the line, and the flare event of the standard flare mold type is satisfied; 2, the standard binding event (Standard Confi). Ned, S-C), refers to the non CME accompanying, the recovery phase on the GOES curve is very short, the foot point observation has not been separated, the coronal image does not observe the rising magnetic ring, the EUV observation curve does not have the flare event delayed by the temperature decreasing in the EUV observation curve; 3, the non standard explosion event (Non-Standard Eruptive, NS-E), refers to the CME adjoint, but does not conform to one item. Some of the other observational flare events of a number of standard outbreaks, some of which are accompanied by a EUV phase; 4, the non standard binding event (Non-Standard Confined, NS-C), without CME, but other observational features are inconsistent with the standard non explosive events, and these events are often shown as a long recovery phase on the GOES curve, in E In the VE observation, the ultra violet phase will appear, and the same as the S-E event, the intensity and the rise of the magnetic rope structure can be observed on the high temperature line at the edge of the surface. But the magnetic rope in the NS-C event will reach a new balance in the process of rising, which is not really exploded. A list of all M and X flare events from May 2010 to December 2011 is presented. The observational characteristics and attribution categories of each flare are given in the table.
【學位授予單位】:中國科學技術大學
【學位級別】:博士
【學位授予年份】:2013
【分類號】:P182.5
【共引文獻】
相關期刊論文 前10條
1 景海榮,楊志良;等離子體中磁場的本性[J];北京師范大學學報(自然科學版);2005年03期
2 丁宗華;吳健;孫樹計;陳金松;班盼盼;;汶川大地震前電離層參量的變化特征與分析[J];地球物理學報;2010年01期
3 王家龍,孫靜蘭;太陽活動及其對地球環(huán)境的影響[J];第四紀研究;2002年06期
4 郝娟;張枚;;用Filter Ratio方法計算太陽日冕溫度[J];德州學院學報;2008年04期
5 溫衛(wèi)斌,李懷峰,孫才紅,金聲震;空間太陽望遠鏡太陽導行鏡原理樣機的研制[J];光電工程;2005年03期
6 章敏;王東;;太陽過渡區(qū)紫外光譜的觀測與診斷[J];光譜學與光譜分析;2011年12期
7 玄偉佳;王東光;鄧元勇;張志勇;孫英姿;;光線追跡法在雙折射濾光器誤差分析中的應用[J];光學精密工程;2008年05期
8 肖江;胡柯良;林佳本;申基;鄧元勇;;用大面陣CCD實現(xiàn)全日面像自動導行[J];光學精密工程;2008年09期
9 王宇舟,金聲震;空間太陽望遠鏡偏振光測量技術[J];光學技術;2004年02期
10 賈志宏;金聲震;耿立紅;王景宇;;空間太陽望遠鏡星載圖像壓縮系統(tǒng)的研究[J];光學技術;2006年S1期
相關博士學位論文 前10條
1 陳彩霞;基于源區(qū)位置統(tǒng)計結果的日冕物質(zhì)拋射觀測特征研究[D];中國科學技術大學;2011年
2 王璞;太陽耀斑過程中的磁場變化研究[D];南京大學;2011年
3 張紹華;并行自適應技術在背景太陽風及快速磁場重聯(lián)數(shù)值模擬中的應用研究[D];中國科學院研究生院(空間科學與應用研究中心);2011年
4 楊利平;背景太陽風的三維數(shù)值模擬研究[D];中國科學院研究生院(空間科學與應用研究中心);2011年
5 何宏青;太陽高能粒子在三維行星際磁場中傳播的研究[D];中國科學院研究生院(空間科學與應用研究中心);2011年
6 楊林;極紫外太陽望遠鏡的檢測方法研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2011年
7 敦金平;太陽活動區(qū)磁場測量和非勢特征研究論文[D];中國科學院研究生院(云南天文臺);2002年
8 羅慶宇;太陽日冕波動加熱機制研究[D];中國科學院研究生院(空間科學與應用研究中心);2003年
9 陳波;空間極紫外太陽望遠鏡光學性能研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2003年
10 占臘生;太陽長期活動特征的研究[D];中國科學院研究生院(云南天文臺);2003年
相關碩士學位論文 前10條
1 王勃;光敏晶體管自動日照計技術研究[D];南京理工大學;2011年
2 章磊;太陽活動和EUV波現(xiàn)象研究[D];中國科學技術大學;2011年
3 石紅雨;等離子體波與波相互作用下的譜線加寬[D];南京師范大學;2002年
4 張健;利用GPS對太陽耀斑電離層響應的監(jiān)測和研究[D];中國科學院研究生院(測量與地球物理研究所);2002年
5 周桂萍;日冕物質(zhì)拋射和太陽表面活動的關系[D];安徽大學;2003年
6 鐘曉春;太陽射電爆發(fā)纖維精細結構的觀測與理論研究[D];西南交通大學;2003年
7 梁紅飛;1981年太陽西邊緣耀斑后環(huán)物理量場的研究[D];中國科學院研究生院(云南天文臺);2003年
8 蘇宙平;空間極紫外望遠鏡在軌校準技術研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2004年
9 尉敏;太陽輻射全光譜模擬人工光源的實驗研究[D];西安建筑科技大學;2004年
10 趙海娟;太陽活動預報[D];中國科學院研究生院(云南天文臺);2004年
,本文編號:2057981
本文鏈接:http://sikaile.net/kejilunwen/tianwen/2057981.html