嫦娥一號(hào)干涉成像光譜儀數(shù)據(jù)處理和Aristarchus地區(qū)著陸點(diǎn)選擇
本文選題:嫦娥一號(hào) + 干涉成像光譜儀; 參考:《山東大學(xué)》2011年博士論文
【摘要】:中國月球探測(cè)工程分為“繞”、“落”、“同”三期。一期繞月探測(cè)工程首顆月球軌道探測(cè)器嫦娥一號(hào)于2007年10月成功發(fā)射,它所搭載的Sagnac型干涉成像光譜儀首次應(yīng)用于月球探測(cè),其主要科學(xué)目標(biāo)為識(shí)別和反演月球表面礦物成分,分析鐵(FeO)和鈦(TiO2)元素含量分布。嫦娥一號(hào)在軌運(yùn)行期間,干涉成像光譜儀獲取了月球表面480-960 nm之間32個(gè)譜段、空間分辨率200 m/pixel的多光譜數(shù)據(jù),其入射角、出射角和太陽相角范圍分別為0-80度、0-7度、0-80度,覆蓋南北緯70度以內(nèi)84%的區(qū)域。干涉成像光譜儀原始數(shù)據(jù)經(jīng)一系列預(yù)處理流程生成2A級(jí)輻亮度光譜圖像;為與其他對(duì)月觀測(cè)和實(shí)驗(yàn)室測(cè)量數(shù)據(jù)比較,消除光照-觀測(cè)幾何和太陽光譜特征對(duì)礦物識(shí)別和鐵鈦含量分析影響,我們根據(jù)干涉成像光譜儀特性和已發(fā)布數(shù)據(jù)狀況,提出2A級(jí)輻亮度數(shù)據(jù)光度校正和反射率轉(zhuǎn)換方法。二期和三期月球探測(cè)工程計(jì)劃向月球發(fā)射軟著陸器和巡視器,進(jìn)行月球表面就位和巡視探測(cè)與樣品返回;我們綜合分析Aristarchus地區(qū)成分?jǐn)?shù)據(jù),表明其作為著陸點(diǎn)具有重要科學(xué)意義。在干涉成像光譜儀數(shù)據(jù)光度校正中,我們分塊提取2A級(jí)輻亮度光譜和相應(yīng)太陽光照-觀測(cè)幾何,分別擬合Lommel-Seeliger和Hapke光度模型,建立月球表面輻亮度與入射角、出射角和太陽相角之間函數(shù)依賴關(guān)系,然后根據(jù)所得光度模型將2A級(jí)輻亮度數(shù)據(jù)歸一至Brown University Keck/NASA Reflectance Experiment Laboratory(RELAB)實(shí)驗(yàn)室月球樣品光譜測(cè)量標(biāo)準(zhǔn)幾何條件。Lommel-Seeliger光度模型相函數(shù)采用四次多項(xiàng)式,并加入指數(shù)項(xiàng)以考慮opposition effect;山最小二乘法計(jì)算模型參數(shù)時(shí),使用基于Levenberg-Marquardt算法的MPFIT程序分段擬合,避免不分段擬合在相角接近于零時(shí)相函數(shù)下降。Hapke光度模型中,根據(jù)干涉成像光譜儀數(shù)據(jù)譜段和太陽相角范圍,我們不考慮多次散射、熱輻射和表面粗糙度,相函數(shù)只包括后向散射Henyey-Greenstein函數(shù),opposition effect采用shadow-hiding項(xiàng);由最小二乘法計(jì)算模型參數(shù)時(shí),使用Differential Evolution算法搜索參數(shù)空間,使擬合結(jié)果不依賴參數(shù)初值選擇。在干涉成像光譜儀數(shù)據(jù)反射率轉(zhuǎn)換中,我們選取2225軌數(shù)據(jù)位于平坦、均勻的Cayley Plains中的一塊區(qū)域作為定標(biāo)點(diǎn),地基望遠(yuǎn)鏡和Clementine UVVIS相機(jī)觀測(cè)都表明其光學(xué)性質(zhì)可由Apollo 16成熟月壤樣品62231代表。干涉成像光譜儀2A級(jí)數(shù)據(jù)光度校正后每一像素輻亮度與定標(biāo)點(diǎn)輻亮度之比乘以Apollo 1662231成熟月壤樣品反射率即將輻亮度數(shù)據(jù)轉(zhuǎn)換為反射率。Aristarchus地區(qū)位于月球正面西北部西經(jīng)30-70度、北緯10-48度之間,包括Aristarchus撞擊坑和高原、Lichtenberg撞擊坑及Gruithuisen穹窿(Gruithuisen Domes)。我們分析這一地區(qū)鐵和釷元素含量混合趨勢(shì),推測(cè)Aristarchus撞擊坑所暴露非月海巖石代表風(fēng)暴洋KREEP地體中與晚期侵入活動(dòng)有關(guān)的成分端元;根據(jù)圖像數(shù)據(jù)和已有研究結(jié)果,表明這一地區(qū)存在火山碎屑沉積、月溪和穹窿等多樣的火山特征,及稀有月球樣品,如硅質(zhì)火山物質(zhì)。干涉成像光譜儀2A級(jí)輻亮度數(shù)據(jù)分塊提取并除以Lommel-Seeliger因子校正臨邊昏暗效應(yīng)后,在太陽相角-輻亮度二維直方圖中明顯分為對(duì)應(yīng)月球表面月海和高地的兩組數(shù)據(jù)。分塊提取數(shù)據(jù)分段擬合Lommel-Seeliger光度模型結(jié)果表明,不同相角分段間斷點(diǎn)產(chǎn)生的擬合曲線在20°-75。相角范圍內(nèi)差別不大;通過對(duì)比同一地區(qū)不同太陽光照-觀測(cè)幾何的兩次覆蓋圖像檢驗(yàn)光度校正效果,初步結(jié)果表明二者光度校正后輻亮度偏差在干涉成像光譜儀地面定標(biāo)實(shí)驗(yàn)允許誤差范圍內(nèi)。Hapke模型光度校正因子與最近USGS Robotic Lunar Observatory (ROLO)數(shù)據(jù)擬合Lommel-Seelige模型光度校正結(jié)果相符。干涉成像光譜儀反射率數(shù)據(jù)與Clementine UVVIS 750 nm和900一nm反射率數(shù)據(jù)對(duì)比表明,二者相對(duì)偏差一般在10%以內(nèi)。Aristarchus高原多樣的火山特征、Lichtenberg撞擊坑附近月海玄武巖年齡和Gruithuisen穹窿火山活動(dòng)使Aristarchus地區(qū)著陸探測(cè)具有重要科學(xué)價(jià)值;Aristarchus撞擊坑拋出物代表月殼化學(xué)分異程度最大的物質(zhì),對(duì)理解月球熱運(yùn)動(dòng)具有重要意義。
[Abstract]:The lunar exploration project of China is divided into three phases: "winding", "falling" and "same". The first lunar orbit detector, Chang'e I, launched in October 2007, was first applied to the lunar exploration with the Sagnac type interferometric imaging spectrometer. Its main scientific objective is to identify and retrieve the mineral components of the moon's surface. The distribution of iron (FeO) and titanium (TiO2) element content. During the orbit of Chang'e I, the interferometric imaging spectrometer obtained 32 spectral segments between the 480-960 nm of the lunar surface and the spatial resolution of 200 m/pixel. The incidence angle, the ejection angle and the solar angle range were 0-80 degrees, 0-7 degrees and 0-80 degrees respectively, covering 84% of the north and south latitude 70 degrees. Domain. The original data of the interferometric imaging spectrometer generated 2A level radiance spectral images through a series of preprocessing processes. To compare with other lunar and laboratory measurements, the effects of illumination observation geometry and solar spectral features on mineral recognition and analysis of iron and titanium content are eliminated. We are based on the characteristics of the interferometric imaging spectrometer and the published number. According to the situation, the 2A level radiance data photometric correction and reflectivity conversion methods are proposed. The two and three lunar exploration projects plan to launch the soft landing gear and inspector to the moon, carry out the lunar surface location and patrol detection and return the sample. We synthetically analyze the component data of the Aristarchus area, indicating that it has important science as a landing point. In the data photometric correction of the interferometric imaging spectrometer, we extract the 2A level radiance spectrum and the corresponding solar illumination - observation geometry to fit the Lommel-Seeliger and Hapke photometric models, respectively, to establish the moon surface radiance and incidence angle, the relation between the ejection angle and the solar angle, and then the 2A model will be based on the obtained photometric model. Degree of radiance data is normalized to Brown University Keck/NASA Reflectance Experiment Laboratory (RELAB) laboratory Lunar Sample spectral measurement standard geometric condition.Lommel-Seeliger photometric model phase function adopted four times polynomial, and adding exponential term to consider opposition effect; mountain least square method to calculate model parameters, using the base The MPFIT program of Levenberg-Marquardt algorithm is piecewise fitting to avoid the non piecewise fitting in the.Hapke photometric model which is near zero phase function. According to the data spectrum section of the interferometric imaging spectrometer and the range of the sun angle, we do not consider multiple scattering, thermal radiation and surface roughness, and the phase function only includes backscatter Henyey-Greenste The in function, the opposition effect uses the shadow-hiding term; when the model parameters are calculated by the least square method, the Differential Evolution algorithm is used to search the parameter space, and the fitting results are not dependent on the initial parameter selection. In the data reflectivity conversion of the interferometric imaging spectrometer, we select the 2225 rail data in a flat and uniform Cayley Plains. As a punctuation point, the optical properties of the ground-based telescope and Clementine UVVIS camera show that the optical properties can be represented by the Apollo 16 mature Lunar Sample 62231. The ratio of each pixel radiance to the fixed point radiance is multiplied by the Apollo 1662231 mature lunar soil sample reflectivity after the 2A level data photometric correction of the interferometric imaging spectrometer. The luminance data is converted to the reflectivity.Aristarchus area located at 30-70 degrees west of the northwest lunar front and 10-48 degrees north latitude, including the Aristarchus crater and the plateau, the Lichtenberg impact pit and the Gruithuisen dome (Gruithuisen Domes). We analyze the mixing trend of the iron and thorium element content in this area, and speculate that the Aristarchus impact crater is violent. The lunar Sea rocks represent the component end elements associated with the late invasion activity in the KREEP terrain of the storm ocean. According to the image data and the existing research results, it is shown that there are various volcanic characteristics, such as the volcanic debris, the moon stream and the dome, and the rare lunar samples, such as siliceous volcanic materials. The 2A level brightness degree of the interferometric imaging spectrometer. Two groups of data are clearly divided into two groups of lunar surface and high ground in the solar angle and radiance two-dimensional histogram according to the partition extraction and division of the Lommel-Seeliger factor. The results of piecewise fitting Lommel-Seeliger photometric model with block extraction data show that the fitting curves of the dissection discontinuous points at the same angle are 2. The difference in the range of 0 -75. phase angle is not significant; by comparing the two coverage images of different solar illumination observation geometry in the same area to check the photometric correction effect, the preliminary results show that the radiance deviation of the two photometric correction after the two photometric calibration is within the allowable error range of the interferometric imaging spectrometer ground calibration experiment, and the.Hapke model photometric correction factor and the nearest USGS Robotic Lunar Observatory (ROLO) data fitting Lommel-Seelige model photometric correction results. The reflectance data of the interferometric imaging spectrometer compared with Clementine UVVIS 750 nm and 900 nm albedo data shows that the relative deviation of the two is generally within 10% of the.Aristarchus plateau, and the lunar sea near the Lichtenberg crater. The basalt age and the Gruithuisen dome volcanism have important scientific value for landing detection in the Aristarchus area, and the ejection from the Aristarchus impact pit represents the most significant chemical differentiation of the lunar crust, which is of great significance to the understanding of the lunar thermal movement.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2011
【分類號(hào)】:P184.5;V476.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張淳民,相里斌,趙葆常,劉良云;干涉成像光譜儀技術(shù)的新發(fā)展[J];光學(xué)技術(shù);2000年03期
2 張文喜;相里斌;袁艷;陶然;杜述松;陳曦;蘇麗娟;;高速轉(zhuǎn)鏡干涉成像光譜儀[J];光子學(xué)報(bào);2006年08期
3 阮萍;楊建峰;趙葆常;;干涉成像光譜儀的通量特性分析[J];光子學(xué)報(bào);2007年02期
4 簡(jiǎn)小華;張淳民;祝寶輝;趙葆常;杜娟;;利用偏振干涉成像光譜儀進(jìn)行偏振探測(cè)的新方法[J];物理學(xué)報(bào);2008年12期
5 趙慧潔;賈國瑞;;姿態(tài)傾斜對(duì)時(shí)-空聯(lián)合調(diào)制型干涉成像光譜儀成像質(zhì)量的影響[J];光學(xué)學(xué)報(bào);2008年03期
6 簡(jiǎn)小華;張淳民;趙葆常;張霖;朱蘭艷;;利用偏振干涉成像光譜儀進(jìn)行偏振檢測(cè)的最佳角度分析[J];物理學(xué)報(bào);2009年04期
7 趙葆常;楊建峰;薛彬;喬衛(wèi)東;邱躍洪;;嫦娥一號(hào)干涉成像光譜儀的定標(biāo)[J];光子學(xué)報(bào);2010年05期
8 張淳民;灻偉健;趙葆常;;新型偏振干涉成像光譜儀噪聲分析與評(píng)價(jià)[J];物理學(xué)報(bào);2010年08期
9 曹瑋亮;廖寧放;崔德琪;譚博能;;推掃型干涉成像光譜儀去除條帶非均勻性的方法[J];光子學(xué)報(bào);2011年04期
10 白鑫;張淳民;景春元;關(guān)小偉;曹芬;李艷娜;謝林利;;干涉成像光譜儀光通量的計(jì)算與分析[J];物理學(xué)報(bào);2011年07期
相關(guān)會(huì)議論文 前10條
1 曹奇志;張淳民;任文藝;吳海英;;提高偏振干涉成像光譜儀圖像質(zhì)量的研究[A];2011西部光子學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2011年
2 穆廷魁;張淳民;;利用偏振干涉成像光譜儀進(jìn)行偏振探測(cè)[A];中國光學(xué)學(xué)會(huì)2011年學(xué)術(shù)大會(huì)摘要集[C];2011年
3 荀毓龍;鄭小兵;吳浩宇;;干涉成像光譜儀的響應(yīng)定標(biāo)問題[A];第十一屆全國光學(xué)測(cè)試學(xué)術(shù)討論會(huì)論文(摘要集)[C];2006年
4 張江;凌宗成;;基于嫦娥一號(hào)干涉成像光譜儀數(shù)據(jù)的月球光度模型[A];第十屆全國月球科學(xué)與比較行星學(xué)隕石學(xué)與天體化學(xué)學(xué)術(shù)研討會(huì)會(huì)議論文集[C];2012年
5 阮萍;楊建峰;趙葆常;;干涉成像光譜儀的通量特性分析[A];第十五屆全國遙感技術(shù)學(xué)術(shù)交流會(huì)論文摘要集[C];2005年
6 杜述松;王詠梅;付利平;呂建工;杜國軍;王永松;王英鑒;;干涉成像光譜儀的研究[A];中國空間科學(xué)學(xué)會(huì)空間探測(cè)專業(yè)委員會(huì)第十九次學(xué)術(shù)會(huì)議論文集(上冊(cè))[C];2006年
7 ;利用偏振干涉成像光譜儀探測(cè)偏振信息[A];2011西部光子學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2011年
8 曹瑋亮;廖寧放;崔德祺;譚博能;;推掃型干涉成像光譜儀去除條帶非均勻性的方法研究[A];中國光學(xué)學(xué)會(huì)2010年光學(xué)大會(huì)論文集[C];2010年
9 孟鑫;李建欣;朱日宏;姚良濤;周偉;;像面干涉成像光譜儀光譜復(fù)原方法研究[A];第十四屆全國光學(xué)測(cè)試學(xué)術(shù)討論會(huì)論文(摘要集)[C];2012年
10 白鑫;張淳民;謝林利;;干涉成像光譜儀光通量的分析與計(jì)算[A];2010年西部光子學(xué)學(xué)術(shù)會(huì)議摘要集[C];2010年
相關(guān)博士學(xué)位論文 前2條
1 張江;嫦娥一號(hào)干涉成像光譜儀數(shù)據(jù)處理和Aristarchus地區(qū)著陸點(diǎn)選擇[D];山東大學(xué);2011年
2 薛彬;CE-1干涉成像光譜儀信息處理及應(yīng)用研究[D];中國科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2006年
相關(guān)碩士學(xué)位論文 前9條
1 許家榕;高光譜干涉成像光譜儀的研究[D];南京理工大學(xué);2008年
2 蘇星;干涉成像光譜儀定標(biāo)技術(shù)研究[D];中國科學(xué)院西安光學(xué)精密機(jī)械研究所;2001年
3 陶然;干涉成像光譜儀調(diào)制度理論研究[D];中國科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2006年
4 毛雅亞;一種新型偏振干涉成像光譜儀的研究[D];北京交通大學(xué);2009年
5 王志平;干涉成像光譜儀光譜應(yīng)用技術(shù)研究[D];中國科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2007年
6 張冬青;偏振干涉成像光譜儀中偏振干涉儀的性能分析及器件優(yōu)化設(shè)計(jì)[D];曲阜師范大學(xué);2002年
7 李湘眷;CE-1干涉成像光譜儀數(shù)據(jù)信息提取技術(shù)研究[D];中國科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2009年
8 李湘濱;大孔徑靜態(tài)干涉成像光譜儀圖像校正技術(shù)研究[D];清華大學(xué);2004年
9 高瑩瑩;大孔徑靜態(tài)干涉成像光譜儀(LASIS)圖像配準(zhǔn)技術(shù)研究[D];中國科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2007年
,本文編號(hào):1988499
本文鏈接:http://sikaile.net/kejilunwen/tianwen/1988499.html