添加補償碼的快速徑向伴星特征星圖識別
發(fā)布時間:2018-06-06 12:30
本文選題:星圖識別 + 補償碼。 參考:《光學精密工程》2017年06期
【摘要】:針對傳統(tǒng)的基于徑向特征的星圖識別算法在構(gòu)建星模式的過程中由于位置噪聲的干擾導致識別率較低的問題,本文提出一種添加補償碼的快速徑向伴星星圖識別算法。該算法以比特向量的形式構(gòu)建基于徑向特征的特征向量,同時將伴星間的角距信息以及位置噪聲的補償信息添加到特征向量中,從而有效地減小了特征庫的容量,提高了星圖識別算法的穩(wěn)定性和識別率。最后本文根據(jù)比特向量的特點采用最小相似差方法快速完成觀測星與導航星之間的初匹配,再根據(jù)同一視場內(nèi)星點位置信息的相關(guān)性完成對觀測星的唯一識別。實驗仿真結(jié)果表明,在位置噪聲為0.5像素的情況下星圖識別成功率達到97.8%;在星等噪聲為0.8 Mv的情況下星圖識別成功率達到96.4%;當以真實星圖為實驗對象時,星圖識別的成功率達到94.2%。與傳統(tǒng)的三角形算法以及未添加補償碼的徑向特征星圖識別算法相比,本文算法在識別成功率和識別時間上均有著不同程度的提高。
[Abstract]:In order to solve the problem of low recognition rate due to the interference of position noise in the traditional star pattern recognition algorithm in the process of building star pattern, a fast radial companion star map recognition algorithm with compensation code is proposed in this paper. The angular distance information between the companion stars and the compensation information of the position noise are added to the feature vector, which effectively reduces the capacity of the feature library and improves the stability and recognition rate of the star pattern recognition algorithm. Finally, according to the characteristics of the bit vector, the minimum similarity difference method is used to quickly complete the initial match between the observation star and the navigation star. The only recognition of the observational stars is completed according to the correlation of the location information in the same field of view. The experimental simulation results show that the star map recognition success rate reaches 97.8% when the position noise is 0.5 pixels, and the star map recognition success rate reaches 96.4% when the star noise is 0.8 Mv; when the real star map is used as the experimental object, the star map recognition is made. Compared with the traditional triangle algorithm and the radial feature map recognition algorithm without compensation code, the success rate of 94.2%. is improved in different degrees in recognition success rate and recognition time.
【作者單位】: 中國科學院長春光學精密機械與物理研究所;
【基金】:國家863高科技研究發(fā)展計劃(No.2011AAxx2035)
【分類號】:P128
,
本文編號:1986521
本文鏈接:http://sikaile.net/kejilunwen/tianwen/1986521.html
教材專著