基于中小型望遠鏡的高色散光譜儀性能測試與積分視場單元設計
發(fā)布時間:2018-05-06 21:29
本文選題:光譜儀 + 天文光學望遠鏡 ; 參考:《山東大學》2011年碩士論文
【摘要】:天體的光譜測量是研究天體的運動狀態(tài)、化學組成和物理性質(zhì)的重要手段。伴隨著近年來諸多新技術(shù)新方法的出現(xiàn),用于地基天文觀測的光譜儀有了很大的發(fā)展。目前天體光譜觀測主要有三種形式:(1)傳統(tǒng)的單個點源光譜觀測;(2)多目標低分辨率光譜巡天觀測;(3)基于積分視場單元的展源三維成像光譜觀測。 高色散光譜儀在光譜觀測中具有重要的地位。首先,恒星元素豐度、星震學、系外行星搜尋等課題的研究需要高分辨率光譜,這些課題需要光譜儀具有極高的測量精度和儀器穩(wěn)定性,對高色散光譜儀的設計、加工、安裝和調(diào)試提出了很高的要求。其次,高色散光譜儀將明亮的天光背景進行了高色散,目標光譜的信噪比受天光背景影響小。 隨著望遠鏡口徑的增加、自適應光學等技術(shù)的應用,望遠鏡終端儀器在空間域和光譜域都可以獲得高信噪比的信號,基于積分視場單元的三維成像光譜儀可以單次曝光同時獲取展源目標的空間信息和光譜信息。國際上8~10米級望遠鏡都配置了三維成像光譜儀,很多中小型望遠鏡都已經(jīng)升級或者將要升級三維成像光譜儀。 我的研究課題主要分為兩個方面:(1)2.16米天文望遠鏡卡焦高色散光纖光譜儀和山東大學威海天文臺階梯光柵高分辨率光譜儀的性能測試,這些測試對于儀器的安裝調(diào)試和將來天文學家制定觀測計劃都有著重要的參考作用;(2)基于2.16米天文望遠鏡現(xiàn)有的儀器設備進行積分視場單元的升級方案設計,在不改變光譜儀原有功能和結(jié)構(gòu)的基礎上擴展望遠鏡觀測模式,提升觀測效率。 論文的第一章闡述了天文光譜觀測的重要意義,第二章主要介紹了2.16米望遠鏡的卡焦高色散光纖光譜儀,并對光譜儀的測試方案和測試結(jié)果進行了詳細的介紹。第三章我對山東大學威海天文臺1米望遠鏡階梯光柵高分辨率光纖光譜儀的構(gòu)造進行了介紹,給出了性能測試結(jié)果,測試表明該儀器的調(diào)試安裝達到了預期的設計指標。第四章對激光頻率梳在天文光譜定標上的應用進行了調(diào)研。激光頻率梳是天體高色散光譜定標的理想光源,但是由于頻譜太密的原因,目前在天文上應用還有一些限制,但是隨著激光頻譜調(diào)制技術(shù)的發(fā)展,這些限制將很快被克服。第五章,我基于2.16米望遠鏡現(xiàn)有的光譜儀進行的積分視場單元的設計,提出了兩種方案:(1)小視場、高空間分辨率;(2)稍大視場、低空間分辨率。論文最后的第六章總結(jié)了天文光學光譜儀的發(fā)展現(xiàn)狀和將來的發(fā)展趨勢。
[Abstract]:Spectral measurement of celestial bodies is an important means to study the motion state, chemical composition and physical properties of celestial bodies. With the emergence of many new techniques and methods in recent years, spectrometers used in ground-based astronomical observation have been greatly developed. At present, there are three main forms of spectral observations of celestial bodies: 1) traditional single point source spectral observations (2) multitarget low resolution spectral survey and 3)) extended source three dimensional imaging spectral observations based on integral field of view unit. High dispersive spectrometer plays an important role in spectral observation. First of all, the study of stellar element abundance, astroseismology, exoplanet search and other subjects requires high resolution spectra, which require the spectrometers to have extremely high measurement accuracy and instrument stability, to design and process the high dispersive spectrometers. Installation and commissioning put forward very high requirements. Secondly, the hyperdispersion spectrometer carries out high dispersion of the bright sky background, and the SNR of the target spectrum is less affected by the sky background. With the increase of telescope aperture and the application of adaptive optics and other technologies, telescope terminal instruments can obtain high signal-to-noise ratio signals in both spatial and spectral domain. The 3-D imaging spectrometer based on integral field of view unit can obtain the spatial and spectral information of the target in a single exposure at the same time. Eight 10 meter telescopes are equipped with three dimensional imaging spectrometers. Many small and medium sized telescopes have been upgraded or will be upgraded. My research project is mainly divided into two aspects: the performance tests of the two aspects of the CAG high dispersion optical fiber spectrometer and the step grating high resolution spectrometer of Weihai Observatory, Shandong University. These tests have important reference value for the installation and debugging of the instrument and for the future astronomer to make the observation plan. Based on the existing instrument equipment of the 2.16m astronomical telescope, the design of the upgrade scheme of the integral field of view unit is carried out. On the basis of not changing the original function and structure of the spectrometer, the telescope observation mode is extended and the observation efficiency is improved. In the first chapter, the significance of astronomical spectral observation is described. In the second chapter, the high dispersion optical fiber spectrometer of 2.16m telescope is introduced, and the test scheme and results of the spectrometer are introduced in detail. In the third chapter, I introduce the structure of the high resolution fiber spectrometer with a 1-meter telescope in Weihai Observatory, Shandong University, and give the performance test results. The test results show that the debugging and installation of the instrument has reached the expected design target. In chapter 4, the application of laser frequency comb in astronomical spectrum calibration is investigated. Laser frequency comb is an ideal light source for the calibration of hyperdispersion spectra of celestial bodies. However, due to the dense spectrum, there are still some limitations in astronomical applications. However, with the development of laser spectrum modulation technology, these limitations will be overcome soon. In the fifth chapter, based on the design of integral field of view unit for 2.16m telescope, I propose two schemes: 1) small field of view, 2) high spatial resolution, slightly larger field of view, and lower spatial resolution. In the last chapter, the present situation and future trend of astronomical optical spectrometer are summarized.
【學位授予單位】:山東大學
【學位級別】:碩士
【學位授予年份】:2011
【分類號】:P111
【參考文獻】
相關(guān)期刊論文 前4條
1 朱永田;8~10m級光學/紅外望遠鏡的高分辨率光譜儀[J];天文學進展;2001年02期
2 王俊凡;朱永田;胡中文;;基于積分視場單元的三維天文成像光譜技術(shù)[J];天文學進展;2008年01期
3 韓海年;趙研英;張煒;朱江峰;王鵬;魏志義;李師群;;PPLN晶體差頻測量飛秒激光脈沖的載波包絡相移[J];物理學報;2007年05期
4 張居甲;程向明;宋佳陽;白金明;;光纖式積分視場光譜儀實驗研究[J];天文研究與技術(shù);2011年02期
,本文編號:1853964
本文鏈接:http://sikaile.net/kejilunwen/tianwen/1853964.html
教材專著