自適應(yīng)光學(xué)系統(tǒng)中SoC應(yīng)用研究
發(fā)布時(shí)間:2018-04-29 15:30
本文選題:自適應(yīng)光學(xué)技術(shù) + 自適應(yīng)光學(xué)硬件平臺(tái) ; 參考:《北京化工大學(xué)》2015年碩士論文
【摘要】:隨著自適應(yīng)光學(xué)技術(shù)的不斷發(fā)展,越來(lái)越多的地面天文望遠(yuǎn)鏡需要安裝自適應(yīng)光學(xué)系統(tǒng)。通過(guò)自適應(yīng)光學(xué)系統(tǒng)對(duì)波前扭曲的校正,將極大地提高地面天文望遠(yuǎn)鏡的分辨率,使得天文望遠(yuǎn)鏡可以看得更深更遠(yuǎn)。在自適應(yīng)光學(xué)系統(tǒng)中,通過(guò)高速CCD捕獲的圖像,實(shí)時(shí)計(jì)算圖像特征,得到最終的控制量信息,并通過(guò)高壓驅(qū)動(dòng)器對(duì)變形鏡鏡面進(jìn)行實(shí)時(shí)調(diào)整,整個(gè)過(guò)程必須在1毫秒之內(nèi)完成。這樣,就可以克服大氣湍流對(duì)波前扭曲的影響。并且,處理過(guò)程越快,對(duì)波前扭曲的校正效果就越好。因此,對(duì)用于光學(xué)圖像處理和控制變形鏡的硬件平臺(tái)提出了苛刻的要求。自適應(yīng)光學(xué)處理平臺(tái),應(yīng)該滿(mǎn)足下面三個(gè)要求:1)能實(shí)時(shí)高效地處理數(shù)據(jù);2)有很好的可視化能力,用于顯示所捕獲的CCD圖像和自適應(yīng)光學(xué)系統(tǒng)的實(shí)時(shí)狀態(tài)參數(shù);3)有遠(yuǎn)程更新的能力,用于對(duì)該系統(tǒng)進(jìn)行遠(yuǎn)程維護(hù)。根據(jù)上述要求,在自適應(yīng)光學(xué)系統(tǒng)的圖像信息處理和變形鏡控制硬件平臺(tái)中,率先使用了Xilinx于2013年量產(chǎn)的Zynq-7000全可編程片上系統(tǒng)(System on Chip, SoC)器件作為系統(tǒng)的核心處理部件,并在其外圍搭載了一片高性能大容量的現(xiàn)場(chǎng)可編程門(mén)陣列(Field Programmable Gate Array, FPGA)專(zhuān)門(mén)用于并行處理復(fù)雜的圖像信息和計(jì)算控制量。根據(jù)自適應(yīng)光學(xué)系統(tǒng)可視化的要求,將全球流行的嵌入式操作系統(tǒng)Ubuntu14.10移植到硬件平臺(tái)中的XC7Z045 SoC器件上,并且通過(guò)Qt集成開(kāi)發(fā)環(huán)境在該操作系統(tǒng)下開(kāi)發(fā)了應(yīng)用程序,用于實(shí)時(shí)顯示CCD捕獲的圖像和自適應(yīng)光學(xué)系統(tǒng)的關(guān)鍵參數(shù)。根據(jù)這些狀態(tài)參數(shù)信息,算法設(shè)計(jì)人員就可以對(duì)控制策略進(jìn)行優(yōu)化,使得自適應(yīng)光學(xué)系統(tǒng)工作在最佳狀態(tài)。此外,考慮到系統(tǒng)的工作環(huán)境,在所設(shè)計(jì)的硬件平臺(tái)中,增加了對(duì)自適應(yīng)光學(xué)系統(tǒng)處理平臺(tái)進(jìn)行遠(yuǎn)程更新的能力。這樣,用戶(hù)不必到現(xiàn)場(chǎng)就能夠?qū)崿F(xiàn)對(duì)系統(tǒng)進(jìn)行遠(yuǎn)程維護(hù)。論文從自適應(yīng)光學(xué)處理平臺(tái)的構(gòu)建、Ubuntu操作系統(tǒng)的移植、SoC應(yīng)用程序開(kāi)發(fā)、上位機(jī)程序開(kāi)發(fā)、系統(tǒng)調(diào)試和測(cè)試五個(gè)方面對(duì)整個(gè)系統(tǒng)硬件平臺(tái)的構(gòu)建和相應(yīng)的軟件程序設(shè)計(jì)進(jìn)行了詳細(xì)說(shuō)明。該研究提出的自適應(yīng)光學(xué)系統(tǒng)硬件處理平臺(tái)體系結(jié)構(gòu)和軟件設(shè)計(jì)方法,除了可以應(yīng)用于已建成和將要興建的天文望遠(yuǎn)鏡自適應(yīng)光學(xué)系統(tǒng)外,對(duì)其它領(lǐng)域自適應(yīng)光學(xué)系統(tǒng)的應(yīng)用也有借鑒作用。
[Abstract]:With the development of adaptive optics, more and more ground-based astronomical telescopes need to install adaptive optical systems. The correction of wavefront distortion by adaptive optical system will greatly improve the resolution of ground-based astronomical telescopes and enable them to see deeper and farther. In the adaptive optics system, the image captured by high speed CCD is used to calculate the image features in real time, the final control information is obtained, and the deformable mirror surface is adjusted in real time through a high voltage driver. The whole process must be completed within 1 millisecond. In this way, the effect of atmospheric turbulence on wavefront distortion can be overcome. Moreover, the faster the processing process, the better the correction of wavefront distortion. Therefore, the hardware platform for optical image processing and deformable mirror control is demanding. The adaptive optical processing platform, which should meet the following three requirements: 1) can process data efficiently and in real time) has a good visualization capability. The real-time state parameter for displaying captured CCD images and adaptive optical systems has the capability of remote updating for remote maintenance of the system. According to the above requirements, in the image information processing and deformable mirror control hardware platform of the adaptive optics system, the Zynq-7000 system on Chip, SoC) device, which was produced by Xilinx in 2013, was first used as the core processing component of the system. A high performance and large capacity field programmable gate array field Programmable Gate array (FPGA) is designed for parallel processing of complex image information and computational control. According to the requirement of adaptive optics system visualization, the global popular embedded operating system Ubuntu14.10 is transplanted to the XC7Z045 SoC device in the hardware platform, and the application program is developed under this operating system through QT integrated development environment. It is used to display the image captured by CCD and the key parameters of adaptive optical system in real time. According to the state parameter information, the algorithm designer can optimize the control strategy and make the adaptive optical system work in the best state. In addition, considering the working environment of the system, the ability of remote updating of the adaptive optical system processing platform is added to the hardware platform designed. In this way, users do not have to go to the site to achieve remote maintenance of the system. In this paper, we build an adaptive optical processing platform to transplant the Ubuntu operating system into SoC applications and develop host computer programs. The construction of the hardware platform and the corresponding software program design of the whole system are described in detail in five aspects of system debugging and testing. The hardware processing platform architecture and software design method of adaptive optics system proposed in this paper can be applied to the adaptive optics system of astronomical telescopes that have been built and will be built. It can also be used for reference in the application of adaptive optics system in other fields.
【學(xué)位授予單位】:北京化工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TP391.41;TH751
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 姜文漢;張雨?yáng)|;饒長(zhǎng)輝;凌寧;官春林;李梅;楊澤平;史國(guó)華;;中國(guó)科學(xué)院光電技術(shù)研究所的自適應(yīng)光學(xué)研究進(jìn)展[J];光學(xué)學(xué)報(bào);2011年09期
,本文編號(hào):1820523
本文鏈接:http://sikaile.net/kejilunwen/tianwen/1820523.html
最近更新
教材專(zhuān)著