近景攝影測(cè)量在LAMOST光纖位置檢測(cè)中的應(yīng)用研究
發(fā)布時(shí)間:2018-03-18 17:41
本文選題:近景攝影測(cè)量 切入點(diǎn):線陣CCD 出處:《中國(guó)科學(xué)技術(shù)大學(xué)》2010年博士論文 論文類型:學(xué)位論文
【摘要】: “大天區(qū)面積多目標(biāo)光纖光譜望遠(yuǎn)鏡(Large Sky Area Mulit-object Fiber Spectroscopic Telescope, LAMOST)"是我國(guó)的一項(xiàng)重大科學(xué)工程項(xiàng)目,在其直徑1.75米的焦面板上,布置有4000根光纖。LAMOST觀測(cè)時(shí),望遠(yuǎn)鏡光學(xué)系統(tǒng)使天體目標(biāo)成像在焦面上,然后光纖定位系統(tǒng)控制4000根光纖與這些天體的像對(duì)準(zhǔn)而獲取它們的光譜。由于存在控制、機(jī)械加工、安裝、工作環(huán)境改變等引起的誤差,如果光纖定位系統(tǒng)是開環(huán)控制,精度不易保證,因此為了修正這些誤差,使LAMOST能夠準(zhǔn)確運(yùn)轉(zhuǎn),必須要對(duì)光纖在焦面上的位置進(jìn)行精密檢測(cè)。 LAMOST光纖位置檢測(cè)有如下要求:大視場(chǎng)、多離散目標(biāo)、高精度、快速、非接觸,幾乎囊括了所有的高檢測(cè)標(biāo)準(zhǔn)。在常規(guī)的位置測(cè)量方法中,近景攝影測(cè)量最有可能全部符合這些要求,因此本文對(duì)近景攝影測(cè)量在光纖位置檢測(cè)中的應(yīng)用進(jìn)行了詳細(xì)研究。 攝影測(cè)量有基于線陣CCD和面陣CCD的兩種可選設(shè)備,針對(duì)各自優(yōu)缺點(diǎn),本文提出了多線陣CCD的掃描檢測(cè)方案和面陣CCD像機(jī)的分區(qū)檢測(cè)方案,并對(duì)這兩種方案都從原理和方法上進(jìn)行了細(xì)致的探討。 論文的主要內(nèi)容包括: 1.設(shè)計(jì)并研制了一套由3個(gè)線陣CCD組成的光纖位置試驗(yàn)檢測(cè)系統(tǒng),該系統(tǒng)檢測(cè)靜止光纖坐標(biāo)的誤差為±0.9μm(2σ),具有很好的穩(wěn)定性。 2.實(shí)現(xiàn)了線陣CCD試驗(yàn)檢測(cè)系統(tǒng)對(duì)動(dòng)態(tài)光纖的位置測(cè)量。對(duì)線陣CCD姿態(tài)標(biāo)定、轉(zhuǎn)換拼接和參數(shù)優(yōu)化后,實(shí)驗(yàn)顯示,該系統(tǒng)檢測(cè)光纖之間距離的誤差只有±5μm(2σ),具有較高的精度。但高檢測(cè)精度需要復(fù)雜的標(biāo)定和優(yōu)化,該過(guò)程需要大范圍高密度的標(biāo)定光纖。 3.建立了光斑定位算法(光重心法)的誤差分析模型,結(jié)合實(shí)驗(yàn)研究,提出了一個(gè)最佳的檢測(cè)條件,在該條件下,光重心法的精度達(dá)到0.04像素,并以光重心法的精度為依據(jù)確立檢測(cè)子區(qū)域的大小。 4.提出一種改進(jìn)的光束法平差自標(biāo)定方法,實(shí)現(xiàn)面陣CCD像機(jī)的在線高精度標(biāo)定。實(shí)驗(yàn)結(jié)果顯示,該標(biāo)定方法只需要數(shù)量很少的控制點(diǎn)就能夠獲得與多控制點(diǎn)的傳統(tǒng)標(biāo)定方法相當(dāng)?shù)木取?本文對(duì)線陣CCD方案的研究結(jié)果是,該方案具有較高的理論檢測(cè)精度,若要在LAMOST現(xiàn)場(chǎng)應(yīng)用,不僅需要大范圍高密度的標(biāo)定光纖,而且對(duì)系統(tǒng)硬件的性能和精度都有很高要求,以目前技術(shù)手段難以實(shí)現(xiàn)。 本文研究并解決了面陣CCD方案中的幾個(gè)關(guān)鍵問(wèn)題,保證了面陣CCD方案從實(shí)驗(yàn)室論證順利移植到LAMOST現(xiàn)場(chǎng)應(yīng)用。
[Abstract]:Large Sky Area Mulit-object Fiber Spectroscopic Telescopes (LAMOST) is an important scientific engineering project in China. The telescope's optical system imagines celestial objects on the focal plane, and then the optical fiber positioning system controls 4,000 optical fibers to align with the images of these objects to obtain their spectra. If the optical fiber positioning system is open-loop control, the precision is not easy to guarantee, so in order to correct these errors and make LAMOST work accurately, it is necessary to accurately detect the position of optical fiber on the focal plane. LAMOST fiber position detection has the following requirements: large field of view, multiple discrete targets, high accuracy, fast, non-contact, almost all high detection standards. Close-range photogrammetry is most likely to meet these requirements, so the application of close-range photogrammetry in optical fiber position detection is studied in detail in this paper. There are two kinds of optional equipments for photogrammetry based on linear CCD and plane array CCD. In view of their respective advantages and disadvantages, this paper puts forward the scanning detection scheme of multi-linear CCD and the area detection scheme of area array CCD camera. The principle and method of the two schemes are discussed in detail. The main contents of the thesis include:. 1. An optical fiber position testing system composed of three linear CCD is designed and developed. The error of measuring static fiber coordinates is 鹵0.9 渭 m ~ 2 蟽 ~ (-1), which has good stability. 2. The position measurement of dynamic optical fiber by linear CCD test system is realized. After calibrating the attitude of linear array CCD, converting splicing and optimizing parameters, the experimental results show that, The error of measuring the distance between optical fibers is only 鹵5 渭 m ~ 2 蟽 ~ (-1), which has a high precision, but the high detection precision needs complex calibration and optimization, and the process requires a large range and high density of calibrated fiber. 3. The error analysis model of spot location algorithm (light center of gravity method) is established, and an optimal detection condition is put forward based on the experimental research. Under this condition, the accuracy of the optical center of gravity method reaches 0.04 pixels. Based on the accuracy of the light center of gravity method, the size of the detection sub-region is established. 4. An improved self-calibration method of beam adjustment is proposed to realize the on-line high-precision calibration of CCD camera. The experimental results show that, The calibration method requires only a small number of control points to achieve a precision comparable to the traditional calibration method for multiple control points. The research results of the linear CCD scheme in this paper show that the scheme has high theoretical detection accuracy. In order to be applied in LAMOST field, it not only needs a wide range of high-density calibrated optical fibers, but also requires high performance and precision of the system hardware. It is difficult to achieve with the present technical means. In this paper, several key problems in the area array CCD scheme are studied and solved to ensure the smooth transplantation of the plane array CCD scheme from the laboratory demonstration to the LAMOST field application.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2010
【分類號(hào)】:TH751
【引證文獻(xiàn)】
相關(guān)碩士學(xué)位論文 前1條
1 熊鐘虎;基于ZigBee的智能電源監(jiān)控系統(tǒng)的設(shè)計(jì)[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年
,本文編號(hào):1630628
本文鏈接:http://sikaile.net/kejilunwen/tianwen/1630628.html
最近更新
教材專著