月球內(nèi)部結構磁成像技術
發(fā)布時間:2018-02-09 15:10
本文關鍵詞: 偏心球模型 磁強計陣列 球體電磁感應理論 Laplace逆變換數(shù)值算法 出處:《中國科學院國家空間科學中心》2016年碩士論文 論文類型:學位論文
【摘要】:作為地球唯一的天然衛(wèi)星,月球是人類探索宇宙邁出第一步的落腳點。月球不具有與地球類似的全球性內(nèi)稟偶極磁場,無法形成大尺度磁層結構,且其半徑和內(nèi)部電導率(尤其是月殼電導率)遠低于地球;當變化的行星際磁場掠過月球時,會在極短的時間內(nèi)完全穿透月球。這種特性為研究行星際磁場與月球的相互作用提供了非常好的手段。月球深部磁成像技術是我們提出的一種新的月球內(nèi)部結構探測方法。它以地磁測深理論為基礎,在月球表面進行高精度磁場矢量探測,特別是由行星際磁場躍變所產(chǎn)生的月球感應磁場三分量變化,進而反演月球深部的地質(zhì)結構。這將有助于人們認知月球殼層電導率的分布特征,也有助于認知月殼的內(nèi)部結構與非對稱性等特征。1969年,美國的Apollo 12和Explorer 35磁強計分別在月面和月球軌道上同時對數(shù)十個行星際階躍磁場的擾動事件進行了觀測,并記錄了磁場三分量的變化;隨后Apollo 14、15、16及前蘇聯(lián)的Lunokhod 2磁強計也分別在月表不同位置對固有磁場進行了單點探測,并推斷出了月球內(nèi)部的一維結構分布。我國未來的探測可以在此基礎上更進一步——在月表設置一個或多個磁強計陣列,并通過磁場聯(lián)測的數(shù)據(jù)反演出各測點垂向厚度的差異和更高精度的月球內(nèi)部結構。月球車和它攜帶的各種儀器可以提供技術支持,宇航員可通過實際操作完成這些科學實驗。受到月球空間特殊電磁環(huán)境的影響和限制,在月表布設的測區(qū)面積不會太大,測點間距可能只相當于月球半徑的幾百分之一甚至幾千分之一,這使得測區(qū)的曲率幾乎可以忽略不計。為保證數(shù)據(jù)的高質(zhì)量和可靠性,對磁強計陣列位置的選取就非常重要。本研究針對均勻模型,利用球體電磁感應理論,計算了不同的模型參數(shù)下,行星際階躍磁場在月表產(chǎn)生的感應磁場,并選取部分測點給出了其變化過程;對于二維偏心模型,還給出了相鄰測點的磁場分量差值與垂向殼層厚度差值、測點間距的定量關系,希望能夠?qū)淼拇艔娪嬯嚵胁贾梅桨钙鸬揭欢ǖ膮⒖甲饔谩?br/>[Abstract]:As the only natural satellite of the earth, the moon is the first step in the exploration of the universe. The moon does not have a global intrinsic dipole magnetic field similar to that of the earth, and is unable to form a large-scale magnetospheric structure. And its radius and internal conductivity (especially the conductivity of the lunar shell) are much lower than those of the Earth; when the changing interplanetary magnetic field skims over the moon, It will penetrate the moon completely in a very short time. This characteristic provides a very good means to study the interaction between interplanetary magnetic field and moon. The deep magnetic imaging technology of the moon is a new interior structure of the moon proposed by us. Methods of detection. It is based on geomagnetic sounding theory, High precision magnetic field vector detection on the lunar surface, especially the three-component variation of the lunar induced magnetic field caused by the interplanetary magnetic field jump, This will help people to understand the distribution characteristics of the conductivity of the lunar crust, as well as the characteristics of the inner structure and asymmetry of the lunar crust. In 1969, The Apollo 12 and Explorer 35 magnetometers in the United States have simultaneously observed the disturbance events of the interplanetary step magnetic field on the lunar surface and the lunar orbit, respectively, and recorded the variation of the three components of the magnetic field. Subsequently, the natural magnetic field was detected at different positions on the lunar surface by the Apollo 14, 15 and 16 magnetometers and the Lunokhod 2 magnetometer of the former Soviet Union, respectively. The one-dimensional structure distribution of the lunar interior has been inferred. The future exploration in China can build on this by placing one or more magnetometer arrays on the lunar table. The difference in vertical thickness of the measured points and the higher accuracy of the lunar interior structure. The lunar rover and the various instruments it carries can provide technical support. Astronauts can perform these scientific experiments through practical operation. Affected and restricted by the special electromagnetic environment of the lunar space, the area of the survey area laid on the lunar surface will not be too large. The distance between the measured points may be 1% or even several thousand parts of the radius of the moon, which makes the curvature of the measured area almost negligible. In order to ensure the high quality and reliability of the data, It is very important to select the position of magnetometer array. In this study, the inductive magnetic field of interplanetary step magnetic field on the moon surface is calculated by using the spherical electromagnetic induction theory in accordance with the uniform model. For the two-dimensional eccentric model, the quantitative relationship between the magnetic field component difference of adjacent measuring points and the thickness of vertical shell and the distance between measuring points is given. It is hoped that it will play a certain reference role in the future magnetometer array arrangement.
【學位授予單位】:中國科學院國家空間科學中心
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:P184
【相似文獻】
相關碩士學位論文 前1條
1 張翔宇;月球內(nèi)部結構磁成像技術[D];中國科學院國家空間科學中心;2016年
,本文編號:1498214
本文鏈接:http://sikaile.net/kejilunwen/tianwen/1498214.html
教材專著