投訴信息自動(dòng)分類與推送系統(tǒng)的研究與設(shè)計(jì)
[Abstract]:With the development of communication service, there are many new problems and contradictions, which will eventually turn into customer complaints to the complaint analysis department. Can effectively analyze complaints, quickly extract users, analysis departments or other business departments concerned about complaints information, no doubt for the correct handling of complaints, the rapid discovery of problems is very helpful. However, at present, there is no very satisfactory complaint information identification technology centered on the attention of users. In most cases, in order to ensure accuracy, we still have to rely on manual identification, which not only costs a lot of manpower and time, but also costs a lot of time. And also can not adapt to the large amount of data, the rapid growth rate of data, easy to cause the backlog of data. More importantly, it is easy to miss opportunities for early detection of problems, so that the problem of response to complaints information cannot be curbed before it can be further expanded. This will not only reduce customer satisfaction, and even make customers lose confidence in brand image. In view of the above problems, this subject analyzes the complaint data, and researches and records the behavior of the complaint analysts to screen the target complaints. This paper tries to solve the problem of automatic classification and push of complaint information with the attention of complaint analysts. At the same time, it is applied to the automatic classification and push system of complaint information according to the actual project requirements, which provides an auxiliary platform to screen the target data for the complaint analysts. The main work of this paper is as follows: first, through the research of complaint data and user analysis habits, the definition and related concepts of automatic classification and push are clarified. Secondly, a text feature extraction method based on TF/IDF algorithm is proposed. Thirdly, a method of constructing complaint space based on VSM model and all kinds of feature word sets is proposed. On this basis, a classification model composed of complaint space, classification algorithm and classification parameters is proposed. Fourthly, by recording the behavior of the user tagging samples, extracting the push relation mapping, and constructing the automatic push model on this basis, to achieve the purpose of correctly pushing the classification results to the corresponding users.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TP391.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 楊曉懿,劉嘉勇,陳淑敏;SVM在文本自動(dòng)分類中的應(yīng)用[J];成都信息工程學(xué)院學(xué)報(bào);2005年02期
2 常凱;;基于TF*IDF垃圾郵件過濾改進(jìn)算法的研究[J];電腦知識與技術(shù);2010年25期
3 李蓉 ,葉世偉 ,史忠植;SVM-KNN分類器——一種提高SVM分類精度的新方法[J];電子學(xué)報(bào);2002年05期
4 霍亮;楊柳;張俊芝;;貝葉斯與k-近鄰相結(jié)合的文本分類方法[J];河北大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年03期
5 張希坤;侯潔;;基于在線學(xué)習(xí)平臺的智能推送機(jī)制研究[J];科技風(fēng);2012年08期
6 張立偉;劉培玉;朱振方;;一種基于改進(jìn)Rocchio的網(wǎng)絡(luò)信息過濾反饋算法研究[J];山東科學(xué);2009年01期
7 渠本哲;張凝;王潛平;;使用Java和XML實(shí)現(xiàn)數(shù)據(jù)移植[J];計(jì)算機(jī)技術(shù)與發(fā)展;2006年09期
8 何中勝;莊燕濱;;基于Apriori & Fp-growth的頻繁項(xiàng)集發(fā)現(xiàn)算法[J];計(jì)算機(jī)技術(shù)與發(fā)展;2008年07期
9 李彬;;基于Hadoop框架的TF-IDF算法改進(jìn)[J];微型機(jī)與應(yīng)用;2012年07期
相關(guān)碩士學(xué)位論文 前4條
1 劉亞南;KNN文本分類中基于遺傳算法的特征提取技術(shù)研究[D];中國石油大學(xué);2011年
2 宋迎花;群體性突發(fā)事件的研究與預(yù)警實(shí)現(xiàn)[D];北京郵電大學(xué);2012年
3 周涓;基于最大最小距離法的多中心聚類算法研究[D];重慶大學(xué);2006年
4 陳震偉;教育資源共享系統(tǒng)中全文檢索技術(shù)的研究[D];西安電子科技大學(xué);2008年
,本文編號:2387872
本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/2387872.html