足球視頻搜索引擎中的用戶偏好挖掘
發(fā)布時間:2018-12-18 13:45
【摘要】:目的互聯(lián)網(wǎng)信息量的急速增長使得人們需要花費(fèi)大量時間從搜索引擎召回的結(jié)果中瀏覽自身感興趣的內(nèi)容,結(jié)合用戶的搜索日志信息和社交平臺信息,提出一種分層的實(shí)時偏好挖掘模型,為用戶提供個性化搜索服務(wù)。方法在系統(tǒng)分析偏好挖掘的國內(nèi)外研究現(xiàn)狀的基礎(chǔ)上,針對足球視頻,提出一種分層權(quán)重?zé)o向圖(HWUG)用戶偏好模型,充分考慮用戶偏好之間的關(guān)聯(lián)信息,通過獲取用戶在足球領(lǐng)域的顯式和隱式反饋信息,提取反饋信息中的偏好標(biāo)簽和偏好動作,并引入時間衰減因子,實(shí)現(xiàn)用戶足球偏好的實(shí)時計(jì)算。結(jié)果算法已經(jīng)應(yīng)用在搜球網(wǎng)(www.findball.net)的個性化檢索結(jié)果排序和視頻推薦上,并已經(jīng)取得了很好的效果。結(jié)論實(shí)驗(yàn)結(jié)果表明,結(jié)合特定領(lǐng)域的知識,基于分層無向權(quán)重圖模型的偏好挖掘算法能更準(zhǔn)確和實(shí)時反映用戶的足球偏好。
[Abstract]:Objective with the rapid growth of Internet information, people need to spend a lot of time browsing the content of their own interest from the results of search engine recall, combining the search log information and social platform information of users. A hierarchical real-time preference mining model is proposed to provide personalized search services for users. Methods on the basis of systematic analysis of the current situation of preference mining at home and abroad, a hierarchical weighted undirected graph (HWUG) user preference model is proposed for football video, which fully considers the related information between user preferences. By obtaining explicit and implicit feedback information from users in football domain, the preference tags and preference actions are extracted from the feedback information, and time decay factor is introduced to realize real-time calculation of users' soccer preferences. Results the algorithm has been applied to the sorting of personalized retrieval results and video recommendation of www.findball.net, and has achieved good results. Conclusion the experimental results show that the preference mining algorithm based on hierarchical undirected weight graph model can reflect users' soccer preferences more accurately and in real time.
【作者單位】: 華中科技大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院;華中科技大學(xué)網(wǎng)絡(luò)與計(jì)算中心;
【基金】:國家自然科學(xué)基金項(xiàng)目(61173114,61202300) 湖北省杰出青年基金項(xiàng)目(2010CDA084) 廣東省產(chǎn)學(xué)研項(xiàng)目(2011B090400251) 中央高;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2011QN057,2011TS094)
【分類號】:TP391.3
[Abstract]:Objective with the rapid growth of Internet information, people need to spend a lot of time browsing the content of their own interest from the results of search engine recall, combining the search log information and social platform information of users. A hierarchical real-time preference mining model is proposed to provide personalized search services for users. Methods on the basis of systematic analysis of the current situation of preference mining at home and abroad, a hierarchical weighted undirected graph (HWUG) user preference model is proposed for football video, which fully considers the related information between user preferences. By obtaining explicit and implicit feedback information from users in football domain, the preference tags and preference actions are extracted from the feedback information, and time decay factor is introduced to realize real-time calculation of users' soccer preferences. Results the algorithm has been applied to the sorting of personalized retrieval results and video recommendation of www.findball.net, and has achieved good results. Conclusion the experimental results show that the preference mining algorithm based on hierarchical undirected weight graph model can reflect users' soccer preferences more accurately and in real time.
【作者單位】: 華中科技大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院;華中科技大學(xué)網(wǎng)絡(luò)與計(jì)算中心;
【基金】:國家自然科學(xué)基金項(xiàng)目(61173114,61202300) 湖北省杰出青年基金項(xiàng)目(2010CDA084) 廣東省產(chǎn)學(xué)研項(xiàng)目(2011B090400251) 中央高;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2011QN057,2011TS094)
【分類號】:TP391.3
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 紀(jì)良浩;;協(xié)作過濾信息推薦技術(shù)研究[J];重慶郵電大學(xué)學(xué)報(自然科學(xué)版);2012年01期
2 王建雄;;圖書館知識管理協(xié)同環(huán)境的構(gòu)建[J];滄桑;2008年04期
3 黃永鋒;覃羅春;;一種有效緩解協(xié)同過濾推薦評價數(shù)據(jù)稀疏問題的算法[J];東華大學(xué)學(xué)報(自然科學(xué)版);2013年01期
4 王道平;李志隆;楊岑;;基于熱門物品懲罰和用戶興趣變化的知識推送算法[J];系統(tǒng)工程;2014年01期
5 歐建斌;;個性化搜索引擎研究[J];微型機(jī)與應(yīng)用;2010年11期
6 馬麗;;基于組合加權(quán)評分的Item-based協(xié)同過濾算法[J];現(xiàn)代圖書情報技術(shù);2008年11期
7 姚忠;魏佳;吳躍;;基于高維稀疏數(shù)據(jù)聚類的協(xié)同過濾推薦算法[J];信息系統(tǒng)學(xué)報;2008年02期
8 蔣,
本文編號:2385937
本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/2385937.html
最近更新
教材專著