農(nóng)產(chǎn)品市場價格web信息分析方法研究
[Abstract]:In recent years, the abnormal fluctuation of the market price of agricultural products in China has become the focus of social concern. The price fluctuation of agricultural products will not only have a direct impact on the farmers' income and the enthusiasm of the farmers, but also to the daily life and the vital interests of the people. In order to maintain the stable and healthy development of the economy, to guarantee the living of the masses, the macro-control of stable prices is particularly important. Price monitoring and forecasting are an important link in the maintenance of price stability. The market price of the agricultural products in China is wide, the update is fast, it is urgent to establish a set of vertical search engine system to realize the data of the price of the agricultural products in the network on a regular basis, and an analysis, prediction and monitoring platform for the price of agricultural products is urgently needed to provide a comprehensive and clear analysis result. To provide the basis of production and control and decision-making analysis for the management of government departments, to become the decision-making basis for farmers to plant the plant, and to make a positive contribution to the market price stability of the agricultural products. The price information of the agricultural products provided by the price information network such as the agricultural net is not uniform, the product name is not standardized, and the like, and the analysis and the summary of the price data of the agricultural products distributed on different websites are analyzed and summarized, and the product name, the product market and the like are put forward. Name, initialize the agricultural product category, initialize the provinces and cities, standardize the data units, go to the re-duplication policy selection and the zero-price data processing for 7 data standardization The principle is to study the DOM tree method, regular expression, HTMLParser to extract the text information of the web page, and set up the price vertical search engine system of the agricultural product market by using the software of Heritrix and so on. The price information of different non-agricultural products can be extracted by using the software of Heritrix and the like, and the price of the agricultural products of the whole SQL server is formed after the standardization. according to the invention, in order to further improve the forecasting precision of the market price of the agricultural products, the agricultural products with abnormal prices are found in time, and the carrot, the white radish, the Chinese cabbage, the scallion, the bean horn, the cucumber, the pepper, the leek and the eggplant are selected, Prediction of thirteen agricultural products of green pepper, potato, tomato and rape In the weighted arithmetic average prediction method, the method of five weights is compared and analyzed, and the experimental results show that the method is superior to the other weight setting method in the current year price, which is better than the simple method in the average prediction method. The results show that the trend continuation method of the quadratic curve and the trend continuation method of the time series are not applicable to the prediction of the price of the agricultural products. In the simple arithmetic mean method, the weighted arithmetic mean method and the time series average increase the long-volume prediction method, the time series geometric mean method, the one-time moving average prediction method, the secondary moving average prediction method, the primary index smoothing method, the quadratic exponential smoothing method and the straight-line trend continuation method The method is applicable to the prediction of the price of agricultural products, and on the basis of that, an improved quadratic exponential smoothing prediction method, a secondary exponential smoothing prediction method and a secondary exponential smoothing prediction method are provided, The error sum of the errors is the lowest, the improved quadratic exponential smoothing method is better than the last modified quadratic exponential smoothing method, which is superior to the quadratic moving average prediction method, and the time series seasonal index method and the seasonal index trend method are compared, and the experimental results are obtained. It can be seen from among the two prediction methods of the most agricultural products that the sum of the errors of the errors is much different, the actual predicted price can be the predicted value with low error square, and the historical error 2 from the predicted value and the actual price error is proposed in the aspect of the determination of the abnormal price of the price. In a way of ranking, it is determined that the price of the current month is abnormal and the prices are abnormal last year, and the prices at this year are still abnormal. At present, most of the information websites related to the price of the agricultural products only provide the original price information display, and the price data analysis system of the agricultural product market price is developed by using the enterprise-class work platform MyEclipse for the planned price data from different websites. The function of price query, price analysis, price forecast and price monitoring is realized. The price analysis function includes the price trend, the comparison of each province, the comparison of the varieties, the year-on-year link and the market comparison, the price prediction function includes single-value prediction and trend prediction, and the comparison between the provinces includes one day's comparison and the trend prediction. For a period of time, the results of the analysis are displayed in the form of a line chart, a bar graph, or a map, and the boundary The surface is beautiful, the function is practical, the agricultural management department, the agricultural enterprise and the farmer can accurately grasp the change of the price of different agricultural products
【學(xué)位授予單位】:沈陽農(nóng)業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2013
【分類號】:TP391.3
【參考文獻】
相關(guān)期刊論文 前10條
1 董曉霞;李干瓊;劉自杰;;農(nóng)產(chǎn)品市場價格短期預(yù)測方法的選擇及應(yīng)用——以鮮奶零售價格為例[J];山東農(nóng)業(yè)科學(xué);2010年01期
2 王勇;張浩;;小麥期貨價格預(yù)測的馬爾可夫模型[J];安徽農(nóng)業(yè)科學(xué);2008年05期
3 胡軍偉;秦奕青;張偉;;正則表達式在Web信息抽取中的應(yīng)用[J];北京信息科技大學(xué)學(xué)報(自然科學(xué)版);2011年06期
4 劉書琪,費月升;黑龍江省大豆價格預(yù)測分析[J];邊疆經(jīng)濟與文化;2004年06期
5 程賢祿;北京市農(nóng)產(chǎn)品批發(fā)市場蔬菜價格預(yù)測預(yù)報體系研究[J];北京農(nóng)業(yè)科學(xué);2002年02期
6 陳挺;劉嘉勇;夏天;范剛;;基于平板型Web論壇的信息抽取研究[J];成都信息工程學(xué)院學(xué)報;2009年01期
7 沈巍;;股票價格預(yù)測模型研究[J];財經(jīng)問題研究;2009年07期
8 張亮;;基于HTMLParser和HttpClient的網(wǎng)絡(luò)爬蟲原理與實現(xiàn)[J];電腦編程技巧與維護;2011年20期
9 程顯林;王敬山;韓冬;姜建國;;互聯(lián)網(wǎng)絡(luò)科技信息自動抽取系統(tǒng)的開發(fā)[J];大慶石油學(xué)院學(xué)報;2008年06期
10 彭祥禮;朱小軍;查志勇;;Web信息抽取和展現(xiàn)系統(tǒng)的設(shè)計與實現(xiàn)[J];電力信息化;2012年02期
相關(guān)博士學(xué)位論文 前8條
1 許笑;分布式Web信息采集關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2011年
2 李嵩松;基于隱馬爾可夫模型和計算智能的股票價格時間序列預(yù)測[D];哈爾濱工業(yè)大學(xué);2011年
3 張小栓;水產(chǎn)品價格預(yù)測支持系統(tǒng)研究[D];中國農(nóng)業(yè)大學(xué);2003年
4 許建潮;Web挖掘中若干問題的研究[D];吉林大學(xué);2005年
5 姜吉發(fā);自由文本的信息抽取模式獲取的研究[D];中國科學(xué)院研究生院(計算技術(shù)研究所);2004年
6 馬麗麗;番茄生長模型及日光溫室小氣候建模的研究[D];沈陽農(nóng)業(yè)大學(xué);2009年
7 陳春玲;電能質(zhì)量擾動分析與監(jiān)測研究[D];沈陽農(nóng)業(yè)大學(xué);2009年
8 孫濤;面向半結(jié)構(gòu)化數(shù)據(jù)的數(shù)據(jù)模型和數(shù)據(jù)挖掘方法研究[D];吉林大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 祝美蓮;半結(jié)構(gòu)化網(wǎng)頁的信息抽取技術(shù)研究[D];中國石油大學(xué);2011年
2 姜海洋;Web應(yīng)用程序的數(shù)據(jù)庫語義發(fā)現(xiàn)方法研究[D];哈爾濱工程大學(xué);2011年
3 陳波;EJB容器集群系統(tǒng)設(shè)計與原型實現(xiàn)[D];電子科技大學(xué);2001年
4 張玉良;一種基于后綴樹的包裝器自動生成方法的研究[D];吉林大學(xué);2005年
5 趙城利;基于Web的信息智能感知技術(shù)及應(yīng)用[D];國防科學(xué)技術(shù)大學(xué);2004年
6 李盛韜;基于主題的Web信息采集技術(shù)研究[D];中國科學(xué)院研究生院(計算技術(shù)研究所);2002年
7 王賢;基于樹結(jié)構(gòu)的Deep Web數(shù)據(jù)抽取研究[D];昆明理工大學(xué);2007年
8 王素雅;農(nóng)產(chǎn)品短期價格分析及預(yù)測方法選擇[D];中國農(nóng)業(yè)科學(xué)院;2009年
9 苗開超;基于指數(shù)平滑模型的農(nóng)產(chǎn)品價格預(yù)測研究[D];合肥工業(yè)大學(xué);2009年
10 金岳富;Web信息采集與信息抽取技術(shù)的研究[D];哈爾濱理工大學(xué);2009年
,本文編號:2328862
本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/2328862.html