搜索引擎用戶滿意度多維分析方法的研究
[Abstract]:With the development of Internet and the arrival of big data era, search engine has become the main way to get information. Search engine system has always sought to show better search results to users. Therefore, the evaluation of search engine results quality has become the focus of search engine manufacturers. According to their own search engine characteristics and business needs, search engine manufacturers have a set of their own evaluation system, in a search engine will be improved before the launch of the evaluation of its good or bad. User satisfaction is a very important index in the evaluation of search engine. It directly reflects the degree of satisfaction with the result returned by the search engine when using the search engine. In this paper, a set of multi-dimensional analysis methods for user fullness analysis of search engine is established by analyzing the existing user behavior click-through data. Firstly, the existing user click behavior log is cleaned, converted, and the characteristics of the log are analyzed. 71 dimension attributes are selected and a multidimensional data model is established. Then, multidimensional analysis is carried out based on multidimensional data model. In multidimensional analysis, the results may be difficult to explain and can not be trusted, and because of the large number of dimensions, there will be dimension explosion in multidimensional cross-analysis. Therefore, the association rule mining is introduced into the multidimensional analysis method to solve the problem of disbelief in the results and multidimensional explosion. Finally, experiments are designed to verify the feasibility of multidimensional analysis and association rules. At the same time, some parameter values used in mining association rules are determined. Through the research of this paper, on the one hand, a set of multidimensional analysis method is established for the analysis of user satisfaction, which enables analysts to analyze user satisfaction from multiple dimensions and angles. On the other hand, it also provides a research idea for the design of multidimensional analysis method and the application of association rule mining to multidimensional analysis method.
【學位授予單位】:東北師范大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.3
【參考文獻】
相關期刊論文 前9條
1 王英博;馬菁;柴佳佳;趙彬;;基于Hadoop平臺的改進關聯(lián)規(guī)則挖掘算法[J];計算機工程;2016年10期
2 鄧曉妹;武剛;;基于點擊日志的搜索引擎用戶滿意度評價研究[J];計算機工程與應用;2015年08期
3 章志剛;吉根林;;一種基于FP-Growth的頻繁項目集并行挖掘算法[J];計算機工程與應用;2014年02期
4 楊立波;;基于聚類的關聯(lián)規(guī)則挖掘算法[J];太原大學學報;2011年03期
5 蘇君華;;搜索引擎評價研究綜述[J];情報雜志;2011年04期
6 王卉;張紅君;;關聯(lián)挖掘研究綜述[J];軟件導刊;2009年03期
7 彭波,閆宏飛;搜索引擎檢索系統(tǒng)質(zhì)量評估[J];計算機研究與發(fā)展;2005年10期
8 印鑒,陳憶群,張鋼;搜索引擎技術研究與發(fā)展[J];計算機工程;2005年14期
9 孫泳,劉少輝,史忠植;數(shù)據(jù)倉庫中多維分析的數(shù)據(jù)展現(xiàn)[J];計算機工程與應用;2004年04期
相關博士學位論文 前1條
1 岑榮偉;基于用戶行為分析的搜索引擎評價研究[D];清華大學;2010年
相關碩士學位論文 前10條
1 黃劍;基于Hadoop的關聯(lián)規(guī)則挖掘算法分析[D];電子科技大學;2015年
2 何健偉;基于Hadoop的數(shù)據(jù)挖掘算法研究與實現(xiàn)[D];北京郵電大學;2015年
3 曾悠;大數(shù)據(jù)時代背景下的數(shù)據(jù)可視化概念研究[D];浙江大學;2014年
4 沙倩;基于云平臺的多維數(shù)據(jù)分析的研究與應用[D];北京郵電大學;2014年
5 周詩慧;基于Hadoop的改進的并行Fp-Growth算法[D];山東大學;2013年
6 呂舜;基于人工標注的搜索引擎評估方法與實現(xiàn)[D];大連理工大學;2013年
7 余錦秀;基于用戶行為分析的搜索引擎自動評價技術研究[D];北京郵電大學;2013年
8 徐立婷;多維數(shù)據(jù)可視化分析方法研究與應用[D];哈爾濱工程大學;2010年
9 馬安勝;多維數(shù)據(jù)關聯(lián)規(guī)則挖掘研究及系統(tǒng)實現(xiàn)[D];吉林大學;2007年
10 馬鐵駒;數(shù)據(jù)倉庫及多維分析[D];大連理工大學;2000年
,本文編號:2320931
本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/2320931.html