語義網(wǎng)自動構(gòu)建中句子成分識別的研究
[Abstract]:With the rapid development of the Internet, the information level of the world is getting higher and higher. But the current use of the World wide Web is not satisfactory, the main problem lies in the search engine intelligence is not enough. As one of the solutions, the semantic Web, a new solution for searching data, embodies the advantages of intelligence. In order to construct the semantic web, it is necessary to construct the resource description framework. For Chinese, the task of constructing a resource description framework is to extract the subject, predicate and object components of a sentence and use the triple to construct the semantic web automatically. Dependency parsing is one of syntactic parsing techniques. It uses language model, Eisner algorithm and maximal spanning tree algorithm to construct the main body of dependency parsing. By finding several blocks that are dependent on the predicate verb, the subject and object components of the sentence are further found. In this way, the subject, predicate and object components of a simple sentence can be obtained in a short time. Semantic role tagging based on this is a representation of shallow semantic analysis. The main role of semantic role tagging in sentences is analyzed by merging the blocks in sentences. Using this method to analyze sentence components has higher accuracy. The selection of features is an important part of the two methods and has a great influence on the final results. This paper focuses on feature selection and selects suitable features that are valid for the final result. The trained language model is used to select and match the features so that the two types can be collocated properly and the subject-predicate triples in sentences can be well found. In this system, the two methods are integrated to improve the time problem caused by the simple semantic role method. The system is tested on the open unannotated corpus and compared with the methods of simple semantic role annotation and simple dependency syntax analysis. The correct rate of this system is higher than that of the simple dependency analysis method. A method in which the time is lower than the semantic role annotation.
【學(xué)位授予單位】:沈陽工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TP391.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 鞠久朋;王紅玲;周國棟;;依存關(guān)系語義角色標(biāo)注研究[J];計算機(jī)工程與應(yīng)用;2010年14期
2 安強(qiáng)強(qiáng);張蕾;;基于依存樹的中文語義角色標(biāo)注[J];計算機(jī)工程;2010年04期
3 張育;王紅玲;周國棟;;基于兩種句法分析的語義角色標(biāo)注比較研究[J];計算機(jī)應(yīng)用與軟件;2010年08期
4 袁文宜;;依存語法概述[J];科技情報開發(fā)與經(jīng)濟(jì);2010年18期
5 劉懷軍;車萬翔;劉挺;;中文語義角色標(biāo)注的特征工程[J];中文信息學(xué)報;2007年01期
6 陳耀東;王挺;陳火旺;;半監(jiān)督學(xué)習(xí)和主動學(xué)習(xí)相結(jié)合的淺層語義分析[J];中文信息學(xué)報;2008年02期
7 周國光;漢語配價語法論略[J];南京師大學(xué)報(社會科學(xué)版);1994年04期
8 劉挺;車萬翔;李生;;基于最大熵分類器的語義角色標(biāo)注[J];軟件學(xué)報;2007年03期
9 王文學(xué);李芳;;基于聯(lián)合方法的中文語義角色標(biāo)注[J];小型微型計算機(jī)系統(tǒng);2011年11期
相關(guān)博士學(xué)位論文 前1條
1 王紅玲;基于特征向量的中英文語義角色標(biāo)注研究[D];蘇州大學(xué);2009年
相關(guān)碩士學(xué)位論文 前2條
1 王玉丹;基于SVM的漢語依存句法分析研究[D];中國海洋大學(xué);2010年
2 汪紅林;基于依存分析的語義角色標(biāo)注研究[D];蘇州大學(xué);2009年
本文編號:2306185
本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/2306185.html