Google矩陣和它的性質(zhì)
發(fā)布時間:2018-10-31 13:23
【摘要】:網(wǎng)頁等級(PageRank)是一個反映網(wǎng)頁重要性的數(shù)值.當一個網(wǎng)頁A連向另一個網(wǎng)頁B的時候,A就等于給網(wǎng)頁B投了有效的一票.一個網(wǎng)頁接受的票越多,這個網(wǎng)頁就越重要.同時,給網(wǎng)頁B投票的網(wǎng)頁本身的等級也決定了該選票的重要性.Google通過每張選票本身重要性和得票多少來計算一個網(wǎng)頁的級別(重要性).Google的核心就是計算每一個網(wǎng)頁的等級(即PageRank).本文主要介紹Google矩陣的定義和產(chǎn)生,解釋PageRank的一些相關(guān)概念,證明Google矩陣及其第二特征值具有的一些性質(zhì),并簡要介紹這些性質(zhì)的應(yīng)用.
[Abstract]:A web level (PageRank) is a value that reflects the importance of a page. When a page A connects to another page B, A is a valid vote for page B. The more tickets a page receives, the more important it is. meanwhile The rank of the page that votes for page B also determines the importance of the ballot. Google calculates the level of a page by the importance of each ballot itself and the number of votes obtained (the core of importance). Google is to calculate each The level of a Web page (that is, PageRank).) This paper mainly introduces the definition and generation of Google matrix, explains some related concepts of PageRank, proves some properties of Google matrix and its second eigenvalue, and briefly introduces the application of these properties.
【作者單位】: 安徽大學(xué)數(shù)學(xué)與計算科學(xué)學(xué)院 安徽大學(xué)數(shù)學(xué)與計算科學(xué)學(xué)院
【分類號】:O151.21
,
本文編號:2302350
[Abstract]:A web level (PageRank) is a value that reflects the importance of a page. When a page A connects to another page B, A is a valid vote for page B. The more tickets a page receives, the more important it is. meanwhile The rank of the page that votes for page B also determines the importance of the ballot. Google calculates the level of a page by the importance of each ballot itself and the number of votes obtained (the core of importance). Google is to calculate each The level of a Web page (that is, PageRank).) This paper mainly introduces the definition and generation of Google matrix, explains some related concepts of PageRank, proves some properties of Google matrix and its second eigenvalue, and briefly introduces the application of these properties.
【作者單位】: 安徽大學(xué)數(shù)學(xué)與計算科學(xué)學(xué)院 安徽大學(xué)數(shù)學(xué)與計算科學(xué)學(xué)院
【分類號】:O151.21
,
本文編號:2302350
本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/2302350.html
最近更新
教材專著