基于用戶行為的信任感知推薦方法研究
[Abstract]:The recommendation provides great convenience for users to make use of network resources. According to whether the input information is clear or not, the recommendation can be divided into two categories: (1) recommendation based on keywords, (2) recommendation based on user's potential behavior and relationship. The most commonly used keyword-based recommendation is search. The user enters the keyword, and the search engine returns the search results closest to the keyword. However, traditional search engines mainly improve the recall and precision of search results, and ignore that users with different backgrounds expect different search results for the same keywords. Simply improving the recall and precision of search engines can not provide users with satisfactory recommendation, which is due to the limited information contained in keyword-based search or the lack of mining the implicit needs of users. As a result, the search results can not meet the personalized needs of users. Therefore, to meet the personalized needs of users is one of the key factors to improve the search quality. This paper holds that improving the quality of personalized search mainly depends on the accuracy of mining the implicit information of users and reflecting the change of user preferences in real time. Based on the systematic research on the search behavior, this paper proposes the following aspects to improve the search quality: (1) A personalized search result prediction method based on user behavior is proposed, and the historical access behavior of the user is analyzed. A hidden Markov model (HMM),) based on user behavior and preference is established to predict user's search preference and realize personalized search. In order to improve the efficiency of this method, the time of estimating HMM parameters is reduced by clustering similar users, and a more efficient personalized search method is obtained. (2) the influence of web page ranking on search quality is studied. Aiming at the phenomenon that web pages can improve their ranking by linking to each other, this paper analyzes the topology of existing web pages, and puts forward a method to identify and eliminate the abnormal ranking lifting pages by the lifting coefficient of web pages. The quality of search results is improved effectively. Another problem that must be faced in the process of recommendation is how to provide users with reasonable recommendation and help them to make decisions when there is no clear requirement. Based on the systematic study of user behavior and trust relationship, this paper proposes to improve the quality of recommendation from the following aspects: (1) study how to provide reasonable recommendation for new users, that is, the cold start problem of users. Because the recommendation given by trusted users is more credible, in order to extend the scope of trusted users and ensure that the extended trust relationship is reliable, this paper proposes to restrict the extension of trust relationships through distrust relationships. Based on the extended trust relationship and the evaluation information of the products, the recommendation effect of the new users and the users with few historical information is improved. (2) the influence of time factors on the recommendation is discussed. This paper studies the relationship between user behavior and their preferences, and proposes a recommendation model to describe the change of user preferences over time. And the similarity calculation process between users is transformed into bipartite graph optimal matching, which not only ensures the accuracy of the recommendation algorithm, but also reduces its time complexity. (3) aiming at the phenomenon that some products with potential needs have little chance to be paid attention to. A recommendation method constrained by long tail distribution is proposed. The method firstly determines the similarity relationship between users based on user behavior, and then reasonably extends the similarity relationship between users. Finally, the recommended weight of commodities is constrained by long tail distribution. It solves the problem that some commodities are difficult to be noticed and discovered by users because of their small quantity of evaluation.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TP391.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙玲;張靜;;微博用戶行為研究的多維解析[J];情報(bào)資料工作;2013年05期
2 郭巖;基于網(wǎng)絡(luò)用戶行為的相關(guān)頁面挖掘模型[J];微電子學(xué)與計(jì)算機(jī);2003年05期
3 ,F(xiàn)云;王宇鴿;;1979-2010年圖書館讀者行p悍治鑫南籽芯縖J];公共圖書館;2012年01期
4 朱彤;劉奕群;茹立云;馬少平;;基于用戶行為的長(zhǎng)查詢用戶滿意度分析[J];模式識(shí)別與人工智能;2012年03期
5 左渭斌;;用戶行為特征庫的構(gòu)建方法研究[J];產(chǎn)業(yè)與科技論壇;2012年10期
6 蘇紅;萬國(guó)根;;基于用戶行為關(guān)聯(lián)分析的電子取證系統(tǒng)研究[J];電信科學(xué);2010年12期
7 方彬;胡俠;王燦;;基于用戶行為的盲人圖書推薦方法[J];計(jì)算機(jī)工程;2011年15期
8 張書娟;董喜雙;關(guān)毅;;基于電子商務(wù)用戶行為的同義詞識(shí)別[J];中文信息學(xué)報(bào);2012年03期
9 李繼洪;黃勤;劉益良;柳玉仙;;基于用戶行為統(tǒng)計(jì)的入侵檢測(cè)判據(jù)研究[J];微計(jì)算機(jī)信息;2009年03期
10 鄭雙陽;林錦賢;;基于用戶行為聚類的搜索[J];計(jì)算機(jī)與數(shù)字工程;2009年12期
相關(guān)會(huì)議論文 前10條
1 武小年;周勝源;;數(shù)據(jù)挖掘在用戶行為可信研究中的應(yīng)用[A];第十一屆保密通信與信息安全現(xiàn)狀研討會(huì)論文集[C];2009年
2 樊旺斌;劉正捷;陳東;張海昕;;博客服務(wù)系統(tǒng)用戶行為研究——用戶訪談[A];第二屆和諧人機(jī)環(huán)境聯(lián)合學(xué)術(shù)會(huì)議(HHME2006)——第2屆中國(guó)人機(jī)交互學(xué)術(shù)會(huì)議(CHCI'06)論文集[C];2006年
3 張書娟;董喜雙;關(guān)毅;;基于電子商務(wù)用戶行為的同義詞識(shí)別[A];中國(guó)計(jì)算語言學(xué)研究前沿進(jìn)展(2009-2011)[C];2011年
4 曹建勛;劉奕群;岑榮偉;馬少平;茹立云;;基于用戶行為的色情網(wǎng)站識(shí)別[A];第六屆全國(guó)信息檢索學(xué)術(shù)會(huì)議論文集[C];2010年
5 李海宏;翟靜;唐常杰;李智;;基于用戶行為挖掘的個(gè)性化Web瀏覽器原型[A];第十九屆全國(guó)數(shù)據(jù)庫學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2002年
6 寇玉波;李玉坤;孟小峰;張相於;趙婧;;個(gè)人數(shù)據(jù)空間管理中的任務(wù)挖掘策略[A];第26屆中國(guó)數(shù)據(jù)庫學(xué)術(shù)會(huì)議論文集(B輯)[C];2009年
7 徐峗;張盼;丁婕;;只逛不買的電子商務(wù)用戶分析——以淘寶網(wǎng)為例[A];第六屆(2011)中國(guó)管理學(xué)年會(huì)——信息管理分會(huì)場(chǎng)論文集[C];2011年
8 蔡皖東;何得勇;;基于用戶行為監(jiān)管的內(nèi)部網(wǎng)安全機(jī)制及其實(shí)現(xiàn)技術(shù)[A];全國(guó)網(wǎng)絡(luò)與信息安全技術(shù)研討會(huì)’2004論文集[C];2004年
9 鄭常熠;佘宇東;王新;薛向陽;;CDN與P2P混合網(wǎng)絡(luò)架構(gòu)下一種基于用戶行為的VoD分發(fā)策略[A];2007通信理論與技術(shù)新發(fā)展——第十二屆全國(guó)青年通信學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2007年
10 吳建軍;;談網(wǎng)頁設(shè)計(jì)的藝術(shù)性表現(xiàn)[A];經(jīng)天緯地——全國(guó)測(cè)繪科技信息網(wǎng)中南分網(wǎng)第十九次學(xué)術(shù)交流會(huì)優(yōu)秀論文選編[C];2005年
相關(guān)重要報(bào)紙文章 前10條
1 張偉;在用戶行為中尋找靈感[N];中華合作時(shí)報(bào);2014年
2 ;危險(xiǎn)的用戶行為讓網(wǎng)絡(luò)面臨風(fēng)險(xiǎn)[N];網(wǎng)絡(luò)世界;2007年
3 本報(bào)記者 宋麗娜;做安全旗艦品牌[N];網(wǎng)絡(luò)世界;2004年
4 群邑中國(guó)互動(dòng)營(yíng)銷總裁 MMA中國(guó)無線營(yíng)銷聯(lián)盟聯(lián)席主席 陳建豪;移動(dòng)互聯(lián)催生用戶行為變化[N];第一財(cái)經(jīng)日?qǐng)?bào);2013年
5 本報(bào)記者 張櫻贏;移動(dòng)醫(yī)療 “笨”有前景[N];計(jì)算機(jī)世界;2013年
6 盎然;大數(shù)據(jù)時(shí)代來臨 你該干什么?[N];中國(guó)政府采購報(bào);2013年
7 東軟研究院副院長(zhǎng) 聞?dòng)⒂?云安全,機(jī)遇與挑戰(zhàn)并存[N];中國(guó)計(jì)算機(jī)報(bào);2010年
8 本報(bào)記者 劉菁菁;Google力拓未來搜索[N];計(jì)算機(jī)世界;2011年
9 本報(bào)記者 曾居仁 通訊員 郝金榮;貴州“萬村千鄉(xiāng)”網(wǎng)頁工程開辟為農(nóng)服務(wù)新渠道[N];中國(guó)氣象報(bào);2012年
10 壯壯;批量保存網(wǎng)頁信息[N];電腦報(bào);2004年
相關(guān)博士學(xué)位論文 前10條
1 張亞楠;基于用戶行為的信任感知推薦方法研究[D];哈爾濱工程大學(xué);2014年
2 蔣朦;社交媒體復(fù)雜行為分析與建模[D];清華大學(xué);2015年
3 陳亞睿;云計(jì)算環(huán)境下用戶行為認(rèn)證與安全控制研究[D];北京科技大學(xué);2012年
4 楊悅;基于網(wǎng)絡(luò)用戶行為的搜索排行榜研究[D];北京交通大學(xué);2013年
5 陽德青;面向社會(huì)網(wǎng)絡(luò)的用戶行為挖掘與應(yīng)用研究[D];復(fù)旦大學(xué);2013年
6 郭U,
本文編號(hào):2241806
本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/2241806.html