基于顏色屬性的車輛陰影去除方法研究
[Abstract]:With the development of science and technology, computer vision technology, high speed network communication technology and electronic technology are developing. Intelligent Transportation system (Intelligent Transportation System,) is playing a more and more powerful role in the rational planning and management of urban traffic. In the sequence image based on video frame, the location, recognition, speed measurement and tracking of moving vehicle targets are the key points of the research of intelligent transportation system (its). The most important problem of Intelligent Transportation system (its) is to detect moving vehicles, and the result of detection will directly affect the subsequent processing of vehicles. Usually the target detection algorithm is used, it is easy to detect the shadow as foreground. Therefore, whether the shadow can be successfully removed will directly affect the accuracy of vehicle detection results. By analyzing the principle of shadow formation and the characteristics of color attributes, a shadow removal method based on color attributes is proposed in this paper. Because the light is usually a parallel straight line, the closer it is to the vehicle, the bigger the shadow is, and the deeper the shadow is, the smaller the shade is and the lighter the shadow is. Color attributes, or color names, are learned from the real world of life. A certain number of image data sets are searched for each color name by Google image search engine. However, there are many wrong positive samples in these datasets. Therefore, the probabilistic latent semantic analysis model (PLSA) is used to learn color names. The method uses color attributes to map an image into an image with clear boundary, clear color and no gradual pixels, and the image can ensure the integrity of the original image. Based on this feature, darker shaded parts can be mapped to different color blocks from vehicles. At the same time, the mapped images are binarized to remove deeper shadows. Because the color attribute processes the whole image, the surrounding environment is mapped to the foreground area. It is difficult to locate the target and to remove the shadow completely. Therefore, this paper combines the background difference based on Gao Si model. First, the moving vehicle is detected to greatly reduce the foreground area to be processed. At the same time, the result of background difference is corroded morphologically to reduce the noise of foreground edge. The background differential and frame differential results are logically and operationally operated to remove the influence of ambient noise on the premise of ensuring the integrity of the vehicle target. At the same time, in order to reduce the internal and edge isolated noise, the corrosion operation is used to remove it, and the morphological expansion operation is used to reduce the internal cavity phenomenon. Finally, according to the connectivity of the shadow region, the vehicle area is filled to obtain more accurate vehicle targets.
【學(xué)位授予單位】:安徽大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U495;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 陸化普;李瑞敏;;城市智能交通系統(tǒng)的發(fā)展現(xiàn)狀與趨勢(shì)[J];工程研究-跨學(xué)科視野中的工程;2014年01期
2 秦鐘;;基于圖像不變矩特征和BP神經(jīng)網(wǎng)絡(luò)的車型分類[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年02期
3 孫正興 ,馮桂煥 ,周若鴻;基于草圖的人機(jī)交互技術(shù)研究進(jìn)展[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2005年09期
4 周麗;朱宏;;基于二重差分法的光流場(chǎng)運(yùn)動(dòng)檢測(cè)[J];計(jì)算機(jī)仿真;2009年12期
5 張紅穎;李鴻;孫毅剛;;基于混合高斯模型的陰影去除算法[J];計(jì)算機(jī)應(yīng)用;2013年01期
6 甘新勝;趙書(shū)斌;;基于背景差的運(yùn)動(dòng)目標(biāo)檢測(cè)方法比較分析[J];指揮控制與仿真;2008年03期
7 侯云山,劉宏兵;三次樣條函數(shù)的計(jì)算機(jī)求解[J];中州大學(xué)學(xué)報(bào);2004年03期
8 王滿剛;;淺談網(wǎng)絡(luò)視頻監(jiān)控系統(tǒng)在港口生產(chǎn)中的應(yīng)用[J];信息系統(tǒng)工程;2013年02期
相關(guān)碩士學(xué)位論文 前4條
1 單春芝;基于形態(tài)學(xué)策略的高分辨率遙感影像道路提取方法研究[D];山東科技大學(xué);2011年
2 趙俊;智能視頻監(jiān)控系統(tǒng)關(guān)鍵技術(shù)研究[D];西安電子科技大學(xué);2007年
3 李麗;基于視頻對(duì)象的壓縮編碼研究[D];山東大學(xué);2009年
4 陳爽;基于圖像處理的模具自動(dòng)識(shí)別與定位技術(shù)研究[D];東北大學(xué) ;2009年
,本文編號(hào):2241640
本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/2241640.html