基于偏好的教育推薦系統(tǒng)設(shè)計與實現(xiàn)
[Abstract]:The growth of Internet use directly spawned information overload. The availability of a large number of topics on the Internet makes it difficult and time-consuming to search for relevant sources of information. Online education is a kind of transformation of traditional education mode. Users can learn in virtual environment according to their own learning rhythm. However, because the current search engines and educational networks are difficult to provide the knowledge searchers with the resources they really need in a short period of time, obtaining resources becomes a big problem. In addition, current online education is less interactive, more adaptive and more interesting, making users' loyalty very low. In the current environment, many researchers introduce social networks to recommend resources consistent with their choices and historical behaviors, which make use of collaborative filtering, content-based filtering and hybrid recommendation algorithms. Early methods emphasized the importance of computing content-based relevance for specific users, and the system provided users with resources with the highest relevance score. The method of score calculation is based on the multiple attributes of content, and the results of different content correlation scores are quite different. For example, in social networks, user affinity and historical browsing behavior patterns are considered to be more important in the calculation of ratings, while in general recommendation systems, similar users with common attributes, such as location, educational level, privacy settings, etc. One of the most important problems in recommendation system is cold start. Missing or sparse data becomes the bottleneck of recommendation system. Based on the existing social networks, this paper proposes an online education system based on collaboration, sharing, ranking and recommendation, which can be recommended according to users' personal preferences. The system first obtains the relevant information of the user through the user registration module, and similar users with the same preference are divided into the same group. Then, based on the similar user groups, the correlation score of resources is calculated, and the resources with the highest score are recommended to the users. For the cold start problem of recommendation system, that is, if the user does not set the corresponding preference information, the system recommends the most popular resources to the user and learns from the feedback behavior of the user. In such a system, user interface design is an extremely important part, can be said to be the focus of the whole system, the user experience is good or not directly affect the success or failure of the whole system. The quality of the system depends on the user interface is easy to use, easy to understand, easy to interact, and the user interface can be completely customized according to user needs. By designing the system in this way, the load of each resource traversal can be reduced, the efficiency of the user can be improved, and the most suitable result can be obtained. The comprehensive consideration of users' current search content and user preferences makes the search of resources more efficient, which is the change of current online learning mode and a key technology point of online education in the future. There are 35 pairs of figs, 5 tables and 60 references.
【學(xué)位授予單位】:中南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TP391.3
【共引文獻】
相關(guān)期刊論文 前10條
1 黎星星;Building a better recommender system in E-commerce[J];Journal of Chongqing University;2003年01期
2 朱郁筱;呂琳媛;;推薦系統(tǒng)評價指標(biāo)綜述[J];電子科技大學(xué)學(xué)報;2012年02期
3 侯治平;;用戶行為模式下電子商務(wù)網(wǎng)站個性化推薦研究[J];電腦與信息技術(shù);2011年04期
4 谷鈺;薛國明;;基于ACM在線評測推薦系統(tǒng)模型研究[J];電腦知識與技術(shù);2011年07期
5 劉兆興;張寧;李季明;;基于協(xié)同過濾和網(wǎng)絡(luò)結(jié)構(gòu)的個性化推薦算法[J];復(fù)雜系統(tǒng)與復(fù)雜性科學(xué);2011年02期
6 劉鵬程;畢旭;羅靜;朱麗霞;;百度地圖API路網(wǎng)搜索功能在職住分離研究中的應(yīng)用[J];地理空間信息;2013年05期
7 李汶華;熊曉棟;郭均鵬;;一種基于案例推理和協(xié)商的群體推薦算法[J];系統(tǒng)工程;2013年11期
8 劉平峰;聶規(guī)劃;陳冬林;;電子商務(wù)推薦系統(tǒng)中推薦策略的自適應(yīng)性[J];計算機工程與應(yīng)用;2007年04期
9 劉平峰;聶規(guī)劃;陳冬林;;基于知識的電子商務(wù)智能推薦系統(tǒng)平臺設(shè)計[J];計算機工程與應(yīng)用;2007年19期
10 王進;;一種使用DSmTrust信任模型的推薦系統(tǒng)[J];計算機工程與應(yīng)用;2011年13期
相關(guān)博士學(xué)位論文 前10條
1 張寅;個性化技術(shù)及其在數(shù)字圖書館中應(yīng)用的研究[D];浙江大學(xué);2009年
2 陳偉;基于時序文本挖掘的新聞內(nèi)容理解與推薦技術(shù)研究[D];浙江大學(xué);2010年
3 王宏宇;商務(wù)推薦系統(tǒng)的設(shè)計研究[D];中國科學(xué)技術(shù)大學(xué);2007年
4 余小高;電子商務(wù)環(huán)境中分布式數(shù)據(jù)挖掘的研究[D];武漢理工大學(xué);2007年
5 劉平峰;基于知識網(wǎng)格的電子商務(wù)智能推薦理論方法研究[D];武漢理工大學(xué);2006年
6 劉康苗;自適應(yīng)網(wǎng)絡(luò)信息獲取服務(wù)技術(shù)研究[D];浙江大學(xué);2008年
7 史e,
本文編號:2209366
本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/2209366.html