基于社交關系與矩陣補全的協(xié)同過濾的推薦算法研究
[Abstract]:In recent years, computer network communication and other technologies have become increasingly sophisticated, people have entered a new era of big data, the arrival of the big data era has further increased the degree of data expansion. Traditional information retrieval systems and recommendation systems can no longer meet the retrieval requirements under the big data environment. The birth of recommendation system solves the problem of inaccuracy of search results in some aspects. Recommendation algorithm is the core of a recommendation system, and collaborative filtering recommendation algorithm is one of the most classical algorithms in the field of recommendation system. However, under the background of this new big data, there are some problems in collaborative filtering recommendation system, which can not solve the problem of sparse score matrix and cold start. In this paper, some improvements have been made to these two problems, the idea of social relations has been added to the recommendation process of collaborative filtering, and the method of matrix complement has been improved. The main work is as follows: on the one hand, The idea of social relationship is added to the similarity calculation process, and a collaborative filtering recommendation algorithm based on social relationship is obtained. Through the social relationship data, each user's friend set can be obtained, and the target user can be recommended according to the items or content that the target user's friends like. The algorithm can solve the cold start based on the user better. It can improve the new user's recommendation satisfaction, this article has carried on the verification through the experiment. On the other hand, a collaborative filtering recommendation algorithm based on social relationship and conditional complement is obtained by selecting the position of matrix complement conditionally. The algorithm further improves the method of matrix complement based on the idea of social relations, and selects the items that meet certain conditions to complement the matrix, which makes the matrix more accurate and reduces the data redundancy. This method can solve the problem of data sparsity, improve the efficiency of the algorithm and improve the accuracy of recommendation. In this paper, quantitative analysis and comparison of the improved algorithm are carried out through specific experiments. The experimental results show that the improved algorithm has higher recommendation accuracy and efficiency, and better MAE / MRSE value.
【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.3
【相似文獻】
相關期刊論文 前10條
1 李穎基,彭宏,鄭啟倫,曾煒;自動分層推薦算法[J];計算機應用;2002年11期
2 徐義峰;徐云青;劉曉平;;一種基于時間序列性的推薦算法[J];計算機系統(tǒng)應用;2006年10期
3 余小鵬;;一種基于多層關聯(lián)規(guī)則的推薦算法研究[J];計算機應用;2007年06期
4 張海玉;劉志都;楊彩;賈松浩;;基于頁面聚類的推薦算法的改進[J];計算機應用與軟件;2008年09期
5 張立燕;;一種基于用戶事務模式的推薦算法[J];福建電腦;2009年03期
6 王晗;夏自謙;;基于蟻群算法和瀏覽路徑的推薦算法研究[J];中國科技信息;2009年07期
7 周珊丹;周興社;王海鵬;倪紅波;張桂英;苗強;;智能博物館環(huán)境下的個性化推薦算法[J];計算機工程與應用;2010年19期
8 王文;;個性化推薦算法研究[J];電腦知識與技術;2010年16期
9 張愷;秦亮曦;寧朝波;李文閣;;改進評價估計的混合推薦算法研究[J];微計算機信息;2010年36期
10 夏秀峰;代沁;叢麗暉;;用戶顯意識下的多重態(tài)度個性化推薦算法[J];計算機工程與應用;2011年16期
相關會議論文 前10條
1 王韜丞;羅喜軍;杜小勇;;基于層次的推薦:一種新的個性化推薦算法[A];第二十四屆中國數據庫學術會議論文集(技術報告篇)[C];2007年
2 唐燦;;基于模糊用戶心理模式的個性化推薦算法[A];2008年計算機應用技術交流會論文集[C];2008年
3 秦國;杜小勇;;基于用戶層次信息的協(xié)同推薦算法[A];第二十一屆中國數據庫學術會議論文集(技術報告篇)[C];2004年
4 周玉妮;鄭會頌;;基于瀏覽路徑選擇的蟻群推薦算法:用于移動商務個性化推薦系統(tǒng)[A];社會經濟發(fā)展轉型與系統(tǒng)工程——中國系統(tǒng)工程學會第17屆學術年會論文集[C];2012年
5 蘇日啟;胡皓;汪秉宏;;基于網絡的含時推薦算法[A];第五屆全國復雜網絡學術會議論文(摘要)匯集[C];2009年
6 梁莘q,
本文編號:2131303
本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/2131303.html