基于Play的用戶匹配與內(nèi)容推薦系統(tǒng)設計與實現(xiàn)
發(fā)布時間:2018-07-10 19:54
本文選題:用戶匹配 + 支持向量機 ; 參考:《電子科技大學》2013年碩士論文
【摘要】:隨著各種互聯(lián)網(wǎng)社區(qū)中的用戶量和相關數(shù)據(jù)量的快速增長,用戶越來越難以獲取到對自己有價值的信息,為此,需要通過計算機幫助用戶在海量信息中篩選出對每個用戶有價值的內(nèi)容。在較早時期發(fā)展起來的分類列表網(wǎng)站、搜索引擎等都是為了解決這個問題,然而這兩種方式存在著各自的局限性,,分類列表網(wǎng)站的內(nèi)容不會針對不同的用戶分別提供內(nèi)容,而是為了滿足大多數(shù)用戶的普遍需求而確定的,所以不能夠?qū)崿F(xiàn)個性化,也不利于對用戶興趣的挖掘;而搜索引擎則依賴于用戶每次主動輸入的關鍵詞,因此容易將用戶局限在已知的一個范圍之內(nèi),不能夠達到內(nèi)容新穎的效果。為了克服上述局限,各種互聯(lián)網(wǎng)社區(qū)開始結合機器智能算法來為用戶提供更優(yōu)質(zhì)的服務,通過機器學習的方法來歸納和總結用戶的行為習慣,達到理解用戶偏好的目的,并根據(jù)這種學習到的偏好為用戶提供個性化服務。但是,對于特定的應用領域應該使用何種方法,以及如何將已有的各種智能算法結合到實際系統(tǒng)中仍然是需要進一步研究的問題。 本論文以為用戶提供個性化的用戶匹配服務和內(nèi)容推薦服務為目標,總結了相關領域的研究現(xiàn)狀,在對線性分類器、支持向量機和協(xié)同過濾等技術進行研究的基礎上,以教師和學生之間的匹配需求以及教學資源的共享需求為背景,設計并實現(xiàn)了一種基于Play框架的用戶匹配與內(nèi)容推薦系統(tǒng),其中用戶匹配功能使用LIBSVM實現(xiàn)、內(nèi)容推薦功能使用LensKit實現(xiàn),兩者都良好地整合到了基于Play框架實現(xiàn)的應用系統(tǒng)之中。 本論文相關工作的先進性主要體現(xiàn)在以下兩個方面: (1)使用支持向量機理論來解決教師和學生用戶之間的匹配問題。支持向量機理論一般用于解決分類問題和回歸分析問題,論文通過對匹配問題的轉換,使得支持向量機可以應用于解決用戶匹配問題,取得了良好的效果。 (2)提出了一種新的推薦系統(tǒng)實現(xiàn)方案。結合Play框架和LensKit推薦庫實現(xiàn)的推薦系統(tǒng)具有高度可配置、易于測試并且功能齊全等特點,可以廣泛應用于實現(xiàn)各個領域的推薦系統(tǒng)。
[Abstract]:With the rapid growth of the number of users and related data in various Internet communities, it is becoming more and more difficult for users to obtain valuable information for themselves. Computers are needed to help users filter out content that is valuable to each user in a huge amount of information. The classifying list website and search engine developed in earlier period are all to solve this problem. However, these two methods have their own limitations, the content of the classified list website will not be provided separately for different users. It is determined to meet the general needs of most users, so it can not be personalized, and it is not conducive to the mining of users' interests, while search engines rely on the keywords that users input actively each time. Therefore, it is easy to limit the user to a known range, and can not achieve novel content effect. In order to overcome the above limitations, various Internet communities began to combine machine intelligent algorithms to provide users with better services, through machine learning methods to sum up and summarize user behavior habits, to achieve the purpose of understanding user preferences. And according to this learning preference for users to provide personalized services. However, what methods should be used in specific application fields and how to integrate various intelligent algorithms into practical systems are still problems that need to be further studied. This paper aims at providing personalized user matching service and content recommendation service, and summarizes the research status in related fields. Based on the research of linear classifier, support vector machine and collaborative filtering, etc. Based on the matching requirements between teachers and students and the sharing of teaching resources, a user matching and content recommendation system based on play framework is designed and implemented, in which the user matching function is implemented with LIBSVM. The content recommendation function is implemented by LensKit, both of which are well integrated into the application system based on play framework. The advancement of this paper is mainly reflected in the following two aspects: (1) support vector machine theory is used to solve the matching problem between teachers and students. Support vector machine (SVM) theory is generally used to solve classification and regression problems. Through the transformation of matching problem, support vector machine can be used to solve user matching problem. Good results have been achieved. (2) A new recommendation system is proposed. The recommendation system based on play framework and LensKit recommendation library is highly configurable, easy to test and has complete functions, so it can be widely used in the implementation of recommendation systems in various fields.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:TP391.3
【參考文獻】
相關期刊論文 前8條
1 王國霞;劉賀平;;個性化推薦系統(tǒng)綜述[J];計算機工程與應用;2012年07期
2 陳君;唐雁;;基于Web社會網(wǎng)絡的個性化Web信息推薦模型[J];計算機科學;2006年04期
3 孫冬婷;何濤;張福海;;推薦系統(tǒng)中的冷啟動問題研究綜述[J];計算機與現(xiàn)代化;2012年05期
4 趙鵬;耿煥同;王清毅;蔡慶生;;基于聚類和分類的個性化文章自動推薦系統(tǒng)的研究[J];南京大學學報(自然科學版);2006年05期
5 陳健;印鑒;;基于影響集的協(xié)作過濾推薦算法[J];軟件學報;2007年07期
6 許海玲;吳瀟;李曉東;閻保平;;互聯(lián)網(wǎng)推薦系統(tǒng)比較研究[J];軟件學報;2009年02期
7 王巧容;趙海燕;曹健;;個性化服務中的用戶建模技術[J];小型微型計算機系統(tǒng);2011年01期
8 劉建國;周濤;汪秉宏;;個性化推薦系統(tǒng)的研究進展[J];自然科學進展;2009年01期
相關碩士學位論文 前2條
1 張娜;電子商務環(huán)境下的個性化信息推薦服務及應用研究[D];合肥工業(yè)大學;2007年
2 陳婷;基于隱私保護的個性化推薦系統(tǒng)的研究與實現(xiàn)[D];復旦大學;2008年
本文編號:2114497
本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/2114497.html
最近更新
教材專著