天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 搜索引擎論文 >

酒店搜索推薦的設(shè)計與分析

發(fā)布時間:2018-06-19 01:38

  本文選題:推薦系統(tǒng) + 酒店搜索; 參考:《華中科技大學(xué)》2013年碩士論文


【摘要】:隨著信息技術(shù)和互聯(lián)網(wǎng)的發(fā)展,人們從信息匱乏時代來到了信息過載時代,用戶很難從海量的信息中快速獲得對自己有用的信息,對信息的利用率反而下降了。因此過濾信息的能力成為了衡量一個信息系統(tǒng)好壞的重要指標。一個具好的信息系統(tǒng),會從海量信息中過濾出用戶最關(guān)注的信息,這將大大增加系統(tǒng)工作的效率,并節(jié)省用戶尋找信息的時間。推薦系統(tǒng)正是在這種背景下應(yīng)運而生,,作為傳統(tǒng)搜索引擎的一個補充,在解決信息過載問題中發(fā)揮著重要的作用。 以某旅游垂直搜索網(wǎng)站為實例展開面向酒店搜索的推薦技術(shù)研究。在深入分析了各種常用推薦系統(tǒng)后,結(jié)合酒店搜索的特點,設(shè)計了一種基于酒店相似度的酒店推薦系統(tǒng)。系統(tǒng)的設(shè)計思路是根據(jù)用戶最近的訪問酒店推測出用戶的興趣,然后推薦相似的酒店。系統(tǒng)包括離線模塊和線上模塊,離線模塊根據(jù)點擊日志和酒店信息計算酒店相似性表,線上模塊根據(jù)用戶的最近訪問歷史計算出推薦結(jié)果并負責收集用戶反饋和記錄系統(tǒng)狀態(tài)。為了對系統(tǒng)進行離線評測和研究,同時設(shè)計了一種基于用戶訪問時間序列的推薦評測系統(tǒng),并定義了命中率和命中率精度兩個精確度指標作為主要的評測指標。該評測系統(tǒng)把每個用戶的點擊詳情日志看成訪問序列,用最近訪問歷史、當前訪問酒店和目標酒店組成的時間窗口在訪問序列上滑動來模擬回放用戶的訪問和推薦過程,并進行相關(guān)統(tǒng)計,計算出評測指標。該評測系統(tǒng)被用來研究基于內(nèi)容、協(xié)同過濾等多種相似性算法對系統(tǒng)的影響,并探究影響推薦效果的各種因素和改進系統(tǒng)的方法。 經(jīng)過研究,發(fā)現(xiàn)使用基于協(xié)同過濾的Amazon相似性算法和點擊詳情轉(zhuǎn)化率相似性算法的效果最好,歸一化相似性是必要的,應(yīng)該經(jīng)常更新酒店相似性表。使用最佳訓(xùn)練集長度、過濾壞數(shù)據(jù)、組合使用多推薦引擎可以有效改進系統(tǒng)效果。綜合使用這些改進方法之后,相對于原始系統(tǒng),命中率提高了7%,命中率精度提高了15%。
[Abstract]:With the development of information technology and Internet, people come to the age of information overload from the age of lack of information. It is very difficult for users to obtain useful information quickly from the mass of information, but the utilization rate of information has declined. Therefore, the ability to filter information has become an important index to measure the quality of an information system. A good information system will filter out the most concerned information from the mass of information, which will greatly increase the efficiency of the system and save the time for users to find information. Recommendation system emerges as the times require under this background, as a supplement of traditional search engine, it plays an important role in solving the problem of information overload. Taking a vertical search website as an example, the recommendation technology for hotel search is studied. A hotel recommendation system based on hotel similarity is designed based on the analysis of various commonly used recommendation systems and the characteristics of hotel search. The design idea of the system is to speculate the user's interest based on the user's recent visit to the hotel, and then recommend similar hotel. The system includes offline module and online module. The offline module calculates hotel similarity table according to the click log and hotel information. The online module calculates the recommended results according to the user's recent visit history and is responsible for collecting user feedback and recording system status. In order to evaluate and study the system off-line, a recommendation evaluation system based on user access time series is designed, and the accuracy index of hit ratio and hit rate is defined as the main evaluation index. The system regards each user's click details log as an access sequence, and uses the recent access history, the time window composed of the current visiting hotel and the target hotel to slide on the access sequence to simulate the playback user's access and recommendation process. And carries on the correlation statistics, calculates the appraisal index. The evaluation system is used to study the influence of content-based, collaborative filtering and other similarity algorithms on the system, and to explore the factors that affect the effectiveness of recommendation and the methods to improve the system. It is found that the similarity algorithm of Amazon based on collaborative filtering and the similarity algorithm of conversion rate of click details are the best. The normalized similarity is necessary and the hotel similarity table should be updated frequently. Using the best training set length, filtering bad data and combining multiple recommendation engines can effectively improve the system effect. After using these improved methods, the hit ratio and accuracy of the original system are increased by 7% and 15% respectively.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TP391.3

【參考文獻】

相關(guān)期刊論文 前6條

1 崔林,宋瀚濤,陸玉昌;基于語義相似性的資源協(xié)同過濾技術(shù)研究[J];北京理工大學(xué)學(xué)報;2005年05期

2 周軍鋒,湯顯,郭景峰;一種優(yōu)化的協(xié)同過濾推薦算法[J];計算機研究與發(fā)展;2004年10期

3 林鴻飛,楊志豪,趙晶;基于內(nèi)容和合作模式的信息推薦機制[J];中文信息學(xué)報;2005年01期

4 鄧愛林,朱揚勇,施伯樂;基于項目評分預(yù)測的協(xié)同過濾推薦算法[J];軟件學(xué)報;2003年09期

5 陳冬林;聶規(guī)劃;劉平峰;;基于網(wǎng)頁語義相似性的商品隱性評分算法[J];系統(tǒng)工程理論與實踐;2006年11期

6 鄧愛林,左子葉,朱揚勇;基于項目聚類的協(xié)同過濾推薦算法[J];小型微型計算機系統(tǒng);2004年09期



本文編號:2037758

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/2037758.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f72d9***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com