天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 搜索引擎論文 >

基于推薦技術(shù)的個性化搜索引擎方案的設(shè)計與實現(xiàn)

發(fā)布時間:2018-05-27 09:19

  本文選題:搜索引擎 + 數(shù)據(jù)挖掘; 參考:《中國地質(zhì)大學(xué)(北京)》2012年碩士論文


【摘要】:隨著互聯(lián)網(wǎng)信息的爆炸性增長,搜索引擎用戶對信息獲取的質(zhì)量提出了更高要求。為了幫助用戶更快更好的找到所需,搜索引擎需要深入分析用戶行為數(shù)據(jù),挖掘行為模式,改善檢索相關(guān)性。本文研究內(nèi)容源于某公司核心部門一項目小組,該項目組致力于挖掘用戶行為數(shù)據(jù),以提升用戶的搜索體驗。 本文通過數(shù)據(jù)挖掘技術(shù),在海量的用戶行為數(shù)據(jù)中挖掘有用的用戶行為模式,借助于全文檢索引擎Lucene,設(shè)計并實現(xiàn)了個性化搜索,并與未實現(xiàn)個性化搜索的系統(tǒng)作對比,結(jié)果表明個性化搜索給出的結(jié)果更能滿足用戶需求。 為達(dá)成目標(biāo),本文首先深入分析信息檢索的相關(guān)理論,完整描述了搜索引擎各模塊組成及其功能,著重指出了搜索引擎測評的重要意義;并詳細(xì)敘述了數(shù)據(jù)挖掘的基礎(chǔ)理論,以及建立在其之上的推薦技術(shù)的基本工作原理。 其次,本文從Query個性化、排序個性化以及產(chǎn)品個性化三個維度對個性化搜索的需求做了深入探討,并構(gòu)建了個性化搜索的模型以及評估體系,對個性化搜索的潛在風(fēng)險亦作了簡要分析。在這些工作的基礎(chǔ)上,提出了實現(xiàn)個性化搜索的總體規(guī)劃。 再次,為了表明用戶行為數(shù)據(jù)可用于個性化搜索,本文從基礎(chǔ)數(shù)據(jù)的角度出發(fā),提出了五個基本假設(shè),并從統(tǒng)計學(xué)的角度充分論證了用戶行為數(shù)據(jù)對對個性化搜索的理論支持。為了保存海量的用戶行為數(shù)據(jù),本文還設(shè)計了數(shù)據(jù)倉庫系統(tǒng),以支撐后端的推薦技術(shù)系統(tǒng)。 最后,本文提出三種實現(xiàn)個性化搜索的詳細(xì)方案以及流程圖,并對核心的推薦系統(tǒng)以及線下挖掘模塊給出了詳細(xì)架構(gòu):第一種方案通過修改相關(guān)性排序算法,以加入個性化因子;第二種方案不需要修改現(xiàn)有搜索引擎的核心算法,僅需要在現(xiàn)有檢索結(jié)果的基礎(chǔ)上進行個性化排序;第三中方案根據(jù)用戶的個性化需求,對用戶檢索的Query進行改寫,這種方案不需要修改原有排序算法。綜合考慮成本以及對現(xiàn)有系統(tǒng)的耦合度,本文拋棄第一種方案,借助于全文檢索引擎Lucene的,集成第二、第三種方案,實現(xiàn)了個性化搜索,并通過“個性化環(huán)境”和“對比環(huán)境”的搜索結(jié)果對比,,證實了個性化搜索更能滿足用戶需求。
[Abstract]:With the explosive growth of Internet information, the users of search engines have put forward higher requirements for the quality of information acquisition. In order to help users to find more quickly and better, search engines need to analyze user behavior data, mining behavior patterns, and improve retrieval relevance. The content of this paper is based on a small project of a company's core department. Group, the project team is committed to mining user behavior data to enhance user search experience.
Through data mining technology, this paper excavate useful user behavior patterns in massive user behavior data, designed and implemented personalized search with the help of full text search engine Lucene, and compared with the system that did not realize personalized search. The results show that the personalized search results can meet the user needs more.
In order to achieve the goal, this paper first deeply analyzes the relevant theory of information retrieval, describes the components and functions of each module of the search engine, points out the significance of the search engine evaluation, and describes the basic theory of data mining and the basic principle of the recommendation technology based on it.
Secondly, this paper makes an in-depth discussion on the requirements of personalized search from three dimensions of Query personalization, sorting, individualization and product individualization, and constructs a personalized search model and evaluation system, and gives a brief analysis of the potential risk of personalized search. On the basis of these work, the general search is put forward. Body planning.
Thirdly, in order to show that user behavior data can be used for personalized search, this paper puts forward five basic hypotheses from the perspective of basic data, and fully demonstrates the theoretical support of user behavior data to personalized search from the statistical point of view. In order to save massive user behavior data, this paper also designs a data warehouse system. A recommended technical system to support the back end.
Finally, this paper puts forward three detailed schemes and flow charts for personalized search, and gives a detailed framework for the core recommendation system and the offline mining module. The first scheme can add personalized factors by modifying the correlation sorting algorithm, and the second schemes need not modify the core algorithms of the existing search engines. It is necessary to make personalized sorting on the basis of the existing retrieval results; thirdly, the third scheme rewrites the user's Query based on the user's personalized requirements. This scheme does not need to modify the original sorting algorithm. The first scheme is abandoned and the full text retrieval engine Luce is abandoned. NE, which integrates second and third schemes, implements personalized search, and compares the search results of "personalized environment" and "contrast environment" to confirm that personalized search can meet the needs of users more.
【學(xué)位授予單位】:中國地質(zhì)大學(xué)(北京)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TP391.3

【參考文獻】

相關(guān)博士學(xué)位論文 前2條

1 孫小華;協(xié)同過濾系統(tǒng)的稀疏性與冷啟動問題研究[D];浙江大學(xué);2005年

2 郁雪;基于協(xié)同過濾技術(shù)的推薦方法研究[D];天津大學(xué);2009年

相關(guān)碩士學(xué)位論文 前2條

1 何克勤;基于標(biāo)簽的推薦系統(tǒng)模型及算法研究[D];華東師范大學(xué);2011年

2 李慧;基于用戶評論信息的商品推薦技術(shù)[D];揚州大學(xué);2007年



本文編號:1941423

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/1941423.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶0bf1e***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
欧美亚洲另类久久久精品| 99视频精品免费视频播放 | 一区中文字幕人妻少妇| 国产成人精品视频一区二区三区| 午夜福利大片亚洲一区| 高清不卡一卡二卡区在线| 青青操视频在线播放免费| 熟女乱一区二区三区丝袜| 欧美一区二区不卡专区| 国产精品午夜福利免费阅读| 日韩女优精品一区二区三区| 亚洲国产精品久久精品成人| 免费午夜福利不卡片在线 视频| 日韩精品一区二区三区av在线| 扒开腿狂躁女人爽出白浆av | 成年女人下边潮喷毛片免费| 欧洲亚洲精品自拍偷拍| 精品久久久一区二区三| 国产又粗又猛又大爽又黄同志| 国内九一激情白浆发布| 精品丝袜一区二区三区性色| 午夜国产成人福利视频| 日韩精品视频高清在线观看| 亚洲精品福利视频在线观看| 欧美日韩一区二区综合| 中文人妻精品一区二区三区四区| 国产麻豆视频一二三区| 青青久久亚洲婷婷中文网| a久久天堂国产毛片精品| 老司机亚洲精品一区二区| 国产老熟女乱子人伦视频| 精品综合欧美一区二区三区| 中文字幕一二区在线观看| 高跟丝袜av在线一区二区三区| 国产精品偷拍视频一区| 千仞雪下面好爽好紧好湿全文| 久久青青草原中文字幕| 日韩国产亚洲一区二区三区| 亚洲中文在线观看小视频| 日本精品最新字幕视频播放 | 在线免费视频你懂的观看|