天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 搜索引擎論文 >

用戶視頻檢索意圖強度識別算法研究

發(fā)布時間:2018-05-15 01:22

  本文選題:短文本分類 + 信息檢索; 參考:《浙江大學(xué)》2015年碩士論文


【摘要】:隨著數(shù)據(jù)爆炸性增長,用戶在信息面前面臨越來越多的選擇性困難。搜索引擎是人們獲取信息的一個重要手段,并且隨著智能設(shè)備的普及,移動端的搜索占有越來越重要的地位。移動設(shè)備有限的展示空間決定了要為用戶提供盡可能精準、有效的信息,因此需要更加準確識別用戶的檢索意圖,從而為用戶提供更加精準的服務(wù),增強用戶體驗。然而在互聯(lián)網(wǎng)發(fā)達的時代,人們的信息需求通常以短串的形式表達,一般由3-4個詞組成,信息描述相對模糊、歧義性較強,造成了對用戶實際需求識別不夠準確。本文利用搜索引擎中豐富的數(shù)據(jù)資源以及用戶的交互結(jié)果,分析、解決用戶視頻檢索意圖強度識別的問題。該技術(shù)應(yīng)用于通用搜索和視頻檢索系統(tǒng)中,通過分析用戶的檢索串識別出視頻意圖強弱,從而將更加精準的結(jié)果以友好的方式展示給用戶。本文首先對用戶輸入的檢索串利用搜索引擎展示結(jié)果以及用戶點擊結(jié)果中的標題進行擴展,同時根據(jù)本課題類別間文本重合度較高的特點提出了一種新的基于熵和詞頻的文本特征選擇方法。其次,詳細設(shè)計并抽取了基于文本、視頻域名統(tǒng)計、搜索引擎返回結(jié)果類型、深度語言模型的語義信息以及session的統(tǒng)計等5組不同的特征及其組合方法進行實驗,驗證了本課題的有效性。受深度學(xué)習(xí)語言模型word2vec的啟發(fā),提出了站點域名的詞向量表示方法Host2vec,將深度語言模型引入檢索意圖強度識別的問題中來。最后,針對用戶檢索視頻檢索意圖強度隨時序變化的關(guān)系進行了分析、挖掘。
[Abstract]:With the explosive growth of data, users face more and more difficulties of selectivity in front of information. Search engine is an important means for people to obtain information, and with the popularity of intelligent devices, mobile search plays an increasingly important role. The limited display space of mobile devices determines the need to provide users with as accurate and effective information as possible, so it is necessary to identify users' retrieval intentions more accurately, so as to provide users with more accurate services and enhance user experience. However, in the era of Internet development, people's information needs are usually expressed in short strings, usually composed of 3-4 words. The information description is relatively vague and ambiguous, which results in inaccurate identification of users' actual needs. Based on the rich data resources in search engines and the interactive results of users, this paper analyzes and solves the problem of identifying the intension of users' video retrieval. This technique is applied to the general search and video retrieval system. By analyzing the user's retrieval string, the video intention is identified, and the more accurate results are displayed to the user in a friendly manner. This paper first extends the search string input by the user using search engines to display the results as well as the titles in the user click results. At the same time, a new text feature selection method based on entropy and word frequency is proposed. Secondly, we design and extract five groups of different features and their combination methods based on text, video domain name statistics, search engine return result type, semantic information of depth language model and session statistics. The validity of this subject is verified. Inspired by the deep learning language model (word2vec), this paper proposes a word vector representation method of site domain name, Host2vec. the depth language model is introduced into the problem of identifying the intension of retrieval intention. Finally, the relationship between the order change of the intention intensity of the user retrieval video retrieval is analyzed, and the mining is carried out.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TP391.41

【參考文獻】

相關(guān)期刊論文 前1條

1 張磊;李亞楠;王斌;李鵬;蔣在帆;;網(wǎng)頁搜索引擎查詢?nèi)罩镜腟ession劃分研究[J];中文信息學(xué)報;2009年02期

,

本文編號:1890350

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/1890350.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d3c9c***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
人妻人妻人人妻人人澡| 好吊妞视频这里有精品| 国产精品白丝久久av| 美国欧洲日本韩国二本道| 亚洲日本中文字幕视频在线观看 | 丰满人妻一二区二区三区av| 欧美日韩精品一区二区三区不卡| 国产午夜精品美女露脸视频 | 一区二区三区18禁看| 99久久国产综合精品二区| 国产免费无遮挡精品视频| 欧美日韩国产福利在线观看| 欧美精品亚洲精品日韩专区| 欧美日韩国内一区二区| 久久偷拍视频免费观看| 国产美女精品人人做人人爽| 国产永久免费高清在线精品 | 国产麻豆视频一二三区| 日韩精品一区二区三区含羞含羞草 | 亚洲天堂久久精品成人| 欧美日韩精品久久亚洲区熟妇人 | 深夜日本福利在线观看| 亚洲午夜精品视频观看| 91欧美日韩国产在线观看| 亚洲一区二区福利在线| 久久精品亚洲精品国产欧美| 中日韩免费一区二区三区| 欧美欧美欧美欧美一区| 亚洲国产四季欧美一区| 97人妻精品一区二区三区免| 欧洲日韩精品一区二区三区| 好吊色免费在线观看视频| 亚洲视频偷拍福利来袭| 爽到高潮嗷嗷叫之在现观看| 日本免费一本一二区三区| 国产又爽又猛又粗又色对黄| 午夜精品一区免费视频| 日本人妻精品有码字幕| 国产亚洲中文日韩欧美综合网| 国产免费一区二区三区av大片| 亚洲精品中文字幕欧美|