面向web視頻的數(shù)據(jù)挖掘及檢索的研究和實現(xiàn)
本文選題:面向web視頻檢索 + 鏡頭檢測; 參考:《電子科技大學(xué)》2012年碩士論文
【摘要】:隨著Internet和多媒體技術(shù)的發(fā)展,使得web上的信息種類繁多,其中尤以視頻形式涵蓋的信息更豐富生動,它們表現(xiàn)了社會和生活的各個方面。如何讓人們能夠從這浩如煙海的視頻信息中找到自己需要的視頻,已經(jīng)成為目前急需解決的重要問題。傳統(tǒng)的對視頻進(jìn)行檢索的方法是基于文本的方式,即人工為視頻進(jìn)行文本注釋,然后利用傳統(tǒng)的信息檢索技術(shù)對文本進(jìn)行檢索。但由于視頻數(shù)據(jù)具有相當(dāng)豐富的信息,難以用精確的語言來描述它的特征,因此采用傳統(tǒng)的檢索方式就存在著弊端。而基于內(nèi)容的視頻檢索技術(shù)能很好地解決這一弊端。 基于內(nèi)容的視頻檢索技術(shù),是通過對視頻進(jìn)行鏡頭檢測,然后提取鏡頭關(guān)鍵幀,對特征進(jìn)行提取后,利用視頻特征進(jìn)行檢索的技術(shù)。然而,web上視頻數(shù)據(jù)量大,如何在基于內(nèi)容的視頻檢索技術(shù)的基礎(chǔ)上提供更快捷、有效地視頻檢索,還必須對視頻進(jìn)行有效地組織和索引,因此對視頻信息進(jìn)行數(shù)據(jù)挖掘的重要性日益突出。 本文以研究基于內(nèi)容的視頻檢索為主,對關(guān)鍵技術(shù)特別視頻鏡頭檢測、關(guān)鍵幀提取、特征提取等技術(shù)進(jìn)行了深入研究,并且研究了數(shù)據(jù)挖掘的聚類算法,以實現(xiàn)面向web視頻數(shù)據(jù)的數(shù)據(jù)挖掘。本文以基于關(guān)鍵幀的方法進(jìn)行視頻檢索,為了進(jìn)一步提高檢索的效果,在檢索前,對關(guān)鍵幀進(jìn)行預(yù)分類。項目組的基于web的搜索引擎系統(tǒng)中對圖像進(jìn)行預(yù)分類時采用了人工的方式,將圖像分為20類來建立基本圖像庫。本文提出對關(guān)鍵幀分類的優(yōu)化算法是不用人工參與,而是由計算機(jī)自動分類,即根據(jù)底層特征和對應(yīng)的關(guān)鍵字,采用K均值聚類的方法對關(guān)鍵幀進(jìn)行分類。經(jīng)對計算機(jī)自動分類的圖像庫所進(jìn)行的檢索試驗表明,與基于web圖像搜索引擎系統(tǒng)的人工分類方法相比具有同樣高的查準(zhǔn)率,這說明了該方法的有效性,克服了人工分類帶來的不足。最后,本文設(shè)計了一個面向web視頻的檢索原型演示系統(tǒng)的總體架構(gòu),,討論了系統(tǒng)的模塊和功能,并對本文提出的方法進(jìn)行了實驗比較和性能分析。
[Abstract]:With the development of Internet and multimedia technology, there are many kinds of information on web, especially the rich and vivid information in the form of video, which represents all aspects of society and life. How to enable people to find their own video from the vast amount of video information has become an important problem that needs to be solved. The traditional method of video retrieval is based on text, that is, manual text annotation for video, and then using traditional information retrieval technology to retrieve text. However, because video data is rich in information, it is difficult to describe its features in precise language, so there are drawbacks in traditional retrieval methods. Content-based video retrieval technology can solve this problem well. Content-based video retrieval is based on the shot detection of video, then the key frame of shot is extracted, the feature is extracted, and then the video feature is retrieved. However, because of the large amount of video data on the web, how to provide faster and more effective video retrieval on the basis of content-based video retrieval technology must be organized and indexed effectively. Therefore, the importance of video data mining is becoming more and more important. This paper focuses on the research of content-based video retrieval. The key technologies, such as special video shot detection, key frame extraction, feature extraction and so on, are studied deeply, and the clustering algorithm of data mining is also studied. In order to realize the data mining for web video data. In this paper, video retrieval is based on key-frame method. In order to further improve the retrieval effect, the key-frame is pre-classified before retrieval. In the web based search engine system of the project team, the image is classified into 20 categories to establish the basic image database. In this paper, an optimization algorithm for key frame classification is proposed. Instead of manual participation, the algorithm is automatically classified by computer, that is, according to the underlying features and corresponding keywords, the K-means clustering method is used to classify key frames. The retrieval experiment on the image database of computer automatic classification shows that it has the same precision rate as the artificial classification method based on web image search engine system, which shows the effectiveness of this method. It overcomes the disadvantage of manual classification. Finally, this paper designs a prototype demonstration system for web video retrieval, discusses the modules and functions of the system, and makes experimental comparison and performance analysis of the methods proposed in this paper.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TP391.41;TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 溫鳳蘭;基于內(nèi)容的多媒體視頻檢索技術(shù)[J];中國傳媒科技;2002年07期
2 丁洪麗;陳懷新;;基于累積直方圖的視頻鏡頭邊界檢測方法[J];電訊技術(shù);2008年03期
3 張繼東,陳都;基于內(nèi)容的視頻檢索技術(shù)[J];電視技術(shù);2002年08期
4 戴聲揚,章毓晉;網(wǎng)上GIF格式中的圖像和圖形圖片篩選[J];電子技術(shù)應(yīng)用;2002年01期
5 明巍;豐洪才;;基于HSV顏色空間的視頻鏡頭檢測算法[J];湖北師范學(xué)院學(xué)報(自然科學(xué)版);2009年04期
6 孫季豐,李穎雄;視頻鏡頭自動分割的若干方法[J];華南理工大學(xué)學(xué)報(自然科學(xué)版);2003年08期
7 劉政凱,湯曉鷗;視頻檢索中鏡頭分割方法綜述[J];計算機(jī)工程與應(yīng)用;2002年23期
8 朱映映,周洞汝;一種基于視頻聚類的關(guān)鍵幀提取方法[J];計算機(jī)工程;2004年04期
9 張磊 ,林福宗 ,張鈸;基于前向神經(jīng)網(wǎng)絡(luò)的圖像檢索相關(guān)反饋算法設(shè)計[J];計算機(jī)學(xué)報;2002年07期
10 冷明偉;陳曉云;顏清;;一種基于影響因子的快速K-均值算法[J];計算機(jī)應(yīng)用;2007年12期
相關(guān)博士學(xué)位論文 前1條
1 唐波;視頻數(shù)據(jù)檢索關(guān)鍵技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2005年
相關(guān)碩士學(xué)位論文 前3條
1 張文哲;基于內(nèi)容的視頻分析與檢索方法研究[D];西北工業(yè)大學(xué);2004年
2 滑勇;基于關(guān)鍵幀的視頻內(nèi)容檢索問題的研究[D];大連理工大學(xué);2005年
3 張旭;基于Web的圖像搜索引擎設(shè)計及數(shù)據(jù)庫系統(tǒng)的實現(xiàn)[D];電子科技大學(xué);2010年
本文編號:1801728
本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/1801728.html