基于互聯(lián)網(wǎng)智商評(píng)測(cè)算法的搜索引擎智商測(cè)試研究
本文選題:互聯(lián)網(wǎng)智商 + 人工智能; 參考:《北京交通大學(xué)》2016年博士論文
【摘要】:人工智能未來(lái)發(fā)展對(duì)于人類可能產(chǎn)生的威脅,目前越來(lái)越多的科學(xué)家和企業(yè)家表達(dá)了擔(dān)心和憂慮,由此產(chǎn)生的人工智能威脅論引發(fā)了社會(huì)巨大爭(zhēng)議。這爭(zhēng)議背后本質(zhì)上是人工智能系統(tǒng)能否定量評(píng)測(cè)的課題,本文以此問(wèn)題作為研究的起點(diǎn)和基礎(chǔ),分析了評(píng)測(cè)人工智能智力發(fā)展水平面臨的困難挑戰(zhàn),認(rèn)為當(dāng)前智能概念定義不清:人類智商測(cè)試與人工智能系統(tǒng)評(píng)測(cè)方法不統(tǒng)一;人工智能系統(tǒng)自身技術(shù)限制等諸多因素是造成上述問(wèn)題的關(guān)鍵。雖然前人科學(xué)家已經(jīng)為人工智能的評(píng)價(jià)體系做出了大量有意義的工作,但定量分析人工智能系統(tǒng)的智力水平問(wèn)題一直存在瓶頸沒(méi)有解決。在互聯(lián)網(wǎng)快速發(fā)展的背景下,本文針對(duì)人工智能系統(tǒng)定量評(píng)測(cè)課題開展了以下工作并產(chǎn)生的創(chuàng)新點(diǎn)有:(1)在人工智能與互聯(lián)網(wǎng)大數(shù)據(jù)深度結(jié)合,“互聯(lián)網(wǎng)虛擬大腦”架構(gòu)等研究基礎(chǔ)上,提出了互聯(lián)網(wǎng)及其應(yīng)用也存在智力水平不斷發(fā)展的問(wèn)題。由此產(chǎn)生并定義了互聯(lián)網(wǎng)智商和互聯(lián)網(wǎng)應(yīng)用的智商。(2)為解決統(tǒng)一測(cè)試人工智能系統(tǒng)和人類智力水平,建立“標(biāo)準(zhǔn)智能系統(tǒng)模型”,對(duì)人工智能系統(tǒng)和人類等生命系統(tǒng)進(jìn)行了統(tǒng)一描述,本文同時(shí)建立了“標(biāo)準(zhǔn)智能系統(tǒng)知識(shí)交互模型”、“標(biāo)準(zhǔn)智能系統(tǒng)的評(píng)測(cè)模型”、“標(biāo)準(zhǔn)智能機(jī)”和“擴(kuò)展馮諾依曼模型”。(3)在“標(biāo)準(zhǔn)智能系統(tǒng)模型”基礎(chǔ)上,制定了互聯(lián)網(wǎng)智商量表和評(píng)測(cè)方法,開發(fā)通用智力評(píng)測(cè)系統(tǒng),使之能夠同時(shí)對(duì)搜索引擎等人工智能系統(tǒng),人類測(cè)試者進(jìn)行測(cè)試,自動(dòng)生成題庫(kù),自動(dòng)計(jì)算其互聯(lián)網(wǎng)智商。(4)利用開發(fā)的智力評(píng)測(cè)系統(tǒng)對(duì)世界50個(gè)搜索引擎和3個(gè)不同年齡段人類測(cè)試者進(jìn)行測(cè)試,形成互聯(lián)網(wǎng)絕對(duì)智商和離差智商排名。應(yīng)用K-means算法進(jìn)行聚類分析;應(yīng)用支持向量機(jī)等算法驗(yàn)證聚類方法的有效性;應(yīng)用分層抽樣方法驗(yàn)證互聯(lián)網(wǎng)智商測(cè)試題庫(kù)的穩(wěn)定性。根據(jù)測(cè)試結(jié)果對(duì)搜索引擎等系統(tǒng)未來(lái)發(fā)展提出建議,提出重點(diǎn)發(fā)展“知識(shí)的創(chuàng)新能力”可以幫助搜索引擎大幅度提高其智能水平。
[Abstract]:At present, more and more scientists and entrepreneurs have expressed their worries and worries about the threats that artificial intelligence may pose to human beings in the future, and the artificial intelligence threat theory has aroused great controversy in society.This controversy is essentially a question of whether artificial intelligence systems can be quantitatively evaluated. This paper takes this issue as the starting point and basis of the research, and analyzes the difficult challenges faced in evaluating the intelligence development level of artificial intelligence.It is considered that the concept of intelligence is not clearly defined, that the testing of human intelligence quotient is not consistent with the evaluation method of artificial intelligence system, and that many factors, such as the technical limitation of artificial intelligence system itself, are the key to the above problems.Although previous scientists have done a lot of meaningful work for the evaluation system of artificial intelligence, the problem of quantitative analysis of the intelligence level of artificial intelligence system has not been solved.In the context of the rapid development of the Internet, the following work has been carried out in this paper for the quantitative evaluation of artificial intelligence systems and the resulting innovations are: (1) the deep integration of artificial intelligence and Internet big data.On the basis of the research on the architecture of Internet virtual brain, it is pointed out that the intelligence level of the Internet and its applications is developing continuously.Thus, the Internet IQ and the intelligence quotient of Internet applications are defined. In order to solve the problem of unified testing of artificial intelligence system and human intelligence level, a "standard intelligent system model" is established.This paper gives a unified description of artificial intelligence system and human life system. At the same time, this paper establishes "Standard Intelligent system knowledge interaction Model", "Standard Intelligent system Evaluation Model","Standard Smart Machine" and "extended von Neumann Model". On the basis of "Standard Intelligent system Model", we developed the Internet IQ scale and evaluation method, and developed a universal intelligence evaluation system.To make it possible to test artificial intelligence systems such as search engines, human testers, and automatically generate question banks,Automatic calculation of its Internet IQ. 4) using the developed intelligence evaluation system to test 50 search engines around the world and 3 human testers of different ages to form the Internet absolute IQ and deviated IQ rankings.K-means algorithm is used to cluster analysis, support vector machine and other algorithms are used to verify the validity of the clustering method, and stratified sampling method is used to verify the stability of the Internet IQ test question bank.According to the test results, this paper puts forward some suggestions for the future development of search engine and other systems, and points out that the emphasis on developing "knowledge innovation ability" can help search engine to improve its intelligence level greatly.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.3;TP18
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 漢城;人工智能系統(tǒng)會(huì)議[J];管理科學(xué)文摘;1994年06期
2 漢城;人工智能系統(tǒng)方面的新書(英國(guó))[J];管理科學(xué)文摘;1994年08期
3 楊則正;用于人工智能系統(tǒng)的技術(shù)手段[J];管理科學(xué)文摘;1995年06期
4 李天鐸;人工智能系統(tǒng)在商業(yè)中的應(yīng)用[J];管理科學(xué)文摘;1995年08期
5 楊則正;零售商管理人工智能系統(tǒng):述評(píng)[J];管理科學(xué)文摘;1996年01期
6 楊則正;人工智能系統(tǒng)的掌握:通向成功的道路[J];管理科學(xué)文摘;1997年09期
7 柴振榮;道路交通管理中的人工智能系統(tǒng)[J];管理科學(xué)文摘;1994年09期
8 李天鐸;人工智能系統(tǒng)和科技數(shù)據(jù)庫(kù)在宇宙研究中的應(yīng)用[J];管理科學(xué)文摘;1995年08期
9 李世聞;人工智能系統(tǒng):弗朗肯斯坦的怪物?[J];南京林業(yè)大學(xué)學(xué)報(bào)(人文社會(huì)科學(xué)版);2001年01期
10 郭亞軍;實(shí)時(shí)人工智能系統(tǒng)的構(gòu)成[J];小型微型計(jì)算機(jī)系統(tǒng);2003年03期
相關(guān)重要報(bào)紙文章 前3條
1 孫定;Siri預(yù)示了一場(chǎng)革命[N];計(jì)算機(jī)世界;2011年
2 尹宏毅;美制成可監(jiān)視生物恐怖活動(dòng)的人工智能系統(tǒng)[N];科技日?qǐng)?bào);2002年
3 記者 彭德倩;火場(chǎng)逃生:跟住“大部隊(duì)”,但別跟太緊[N];解放日?qǐng)?bào);2011年
相關(guān)博士學(xué)位論文 前1條
1 劉鋒;基于互聯(lián)網(wǎng)智商評(píng)測(cè)算法的搜索引擎智商測(cè)試研究[D];北京交通大學(xué);2016年
,本文編號(hào):1761728
本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/1761728.html