基于語義的遙感影像數(shù)據(jù)檢索關(guān)鍵技術(shù)研究
發(fā)布時間:2018-04-01 05:25
本文選題:元數(shù)據(jù) 切入點:遙感影像 出處:《國防科學(xué)技術(shù)大學(xué)》2013年碩士論文
【摘要】:隨著空間信息科學(xué)的快速發(fā)展,遙感技術(shù)作為空間信息技術(shù),其技術(shù)領(lǐng)域已經(jīng)涵蓋遙感、地理信息系統(tǒng)、全球定位系統(tǒng)等諸多技術(shù)范疇。其各類空間數(shù)據(jù)的獲取方式更加多樣化,獲取的效率呈現(xiàn)出快速化的趨向,遙感影像數(shù)據(jù)屬于空間數(shù)據(jù),數(shù)據(jù)迅速增長在利于空間信息獲取的同時,其龐大的數(shù)據(jù)存儲也為其影像數(shù)據(jù)的處理和應(yīng)用提出了亟待解決的問題。也正因為如此,人們對海量影像數(shù)據(jù)管理和應(yīng)用的研究和討論成為當(dāng)今遙感技術(shù)應(yīng)用中的一個熱點。在本文中,在對遙感影像數(shù)據(jù)檢索的有關(guān)技術(shù)問題進行研究和分析的基礎(chǔ)上,針對遙感影像數(shù)據(jù)的存儲、管理、檢索和發(fā)布等問題,研究設(shè)計了基于語義的遙感影像數(shù)據(jù)檢索解決方案。本文完成的主要工作如下:1、針對多源遙感影像數(shù)據(jù),提出了基于語義的遙感影像數(shù)據(jù)檢索系統(tǒng)的元數(shù)據(jù)參考標(biāo)準(zhǔn),該參考標(biāo)準(zhǔn)對獲取的遙感影像數(shù)據(jù)的存儲和管理具有一定的普適性,有利于影像數(shù)據(jù)的檢索和發(fā)布,從而促進遙感影像數(shù)據(jù)的共享,提高了影像數(shù)據(jù)的利用率。2、根據(jù)遙感影像的特點,使用元數(shù)據(jù)抽取技術(shù)實現(xiàn)對元數(shù)據(jù)的入庫管理,并對遙感影像元數(shù)據(jù)和影像數(shù)據(jù)的組織存儲進行了深入研究,針對遙感影像數(shù)據(jù)的存儲管理問題給出了較好的解決方案。3、與基于語義的遙感影像數(shù)據(jù)檢索元數(shù)據(jù)參考標(biāo)準(zhǔn)相對應(yīng),建立了遙感影像檢索應(yīng)用本體模型,定義了本體中的概念及屬性,并描述了它們之間的關(guān)系;通過對遙感影像檢索應(yīng)用本體的查詢,實現(xiàn)了對包含關(guān)系和等價關(guān)系的語義查詢擴展。4、集成上述成果,設(shè)計并實現(xiàn)了基于語義的遙感影像數(shù)據(jù)檢索原型系統(tǒng)——Rs Image Search。詳細闡述了各個模塊的設(shè)計和實現(xiàn)過程,實現(xiàn)了遙感數(shù)據(jù)庫索引的自動重建與同步更新。實驗結(jié)果表明該原型系統(tǒng)較好的實現(xiàn)了遙感影像數(shù)據(jù)的快速檢索以及基于自然語言的人性化WEB服務(wù),較好的解決了海量遙感影像數(shù)據(jù)的存儲管理和共享發(fā)布等問題,提高了搜索引擎的搜索效果。
[Abstract]:With the rapid development of spatial information science, remote sensing technology, as a spatial information technology, has covered many technical fields such as remote sensing, geographic information system, global positioning system and so on.The methods of obtaining all kinds of spatial data are more diversified, and the efficiency of acquisition shows a tendency of quickening. Remote sensing image data belong to spatial data, and the rapid growth of data is conducive to the acquisition of spatial information at the same time.Its huge data storage also brings forward the problem to be solved urgently for its image data processing and application.Because of this, the research and discussion of mass image data management and application has become a hot spot in the application of remote sensing technology.In this paper, based on the research and analysis of the related technical problems of remote sensing image data retrieval, aiming at the storage, management, retrieval and publication of remote sensing image data,The solution of remote sensing image data retrieval based on semantics is studied and designed.The main work of this paper is as follows: 1. For multi-source remote sensing image data, the metadata reference standard of remote sensing image retrieval system based on semantics is put forward.This reference standard has a certain universality for the storage and management of remote sensing image data, which is conducive to the retrieval and publication of image data, thus promoting the sharing of remote sensing image data.According to the characteristics of remote sensing image, metadata extraction technology is used to realize the management of metadata, and the organization and storage of metadata and image data of remote sensing image are deeply studied.A better solution to the storage and management of remote sensing image data is given. The ontology model of remote sensing image retrieval is established in accordance with the semantic metadata reference standard for remote sensing image retrieval.The concepts and attributes of ontology are defined, and the relationships between them are described. By querying the ontology of remote sensing image retrieval application, the semantic query extension.The prototype system of remote sensing image retrieval based on semantics, RS Image search, is designed and implemented.The design and implementation of each module are described in detail, and the automatic reconstruction and synchronous updating of index of remote sensing database are realized.The experimental results show that the prototype system achieves the fast retrieval of remote sensing image data and the humanized WEB service based on natural language, and solves the problems of storage, management and sharing of massive remote sensing image data.Improved search engine search results.
【學(xué)位授予單位】:國防科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TP751
,
本文編號:1694176
本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/1694176.html
最近更新
教材專著