天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 搜索引擎論文 >

圖數(shù)據(jù)庫(kù)對(duì)象級(jí)別關(guān)鍵詞檢索算法研究

發(fā)布時(shí)間:2018-03-25 08:29

  本文選題:關(guān)系數(shù)據(jù)庫(kù) 切入點(diǎn):圖數(shù)據(jù)庫(kù) 出處:《大連海事大學(xué)》2013年碩士論文


【摘要】:關(guān)系數(shù)據(jù)庫(kù)技術(shù)與信息檢索技術(shù)的融合,在應(yīng)用需求的推動(dòng)下迅速發(fā)展。使用戶(hù)既不需要懂得復(fù)雜的結(jié)構(gòu)化查詢(xún)語(yǔ)言,又不需要懂得底層的數(shù)據(jù)庫(kù)模式,便可以像使用Web搜索引擎一樣對(duì)數(shù)據(jù)庫(kù)中的數(shù)據(jù)進(jìn)行查詢(xún)。對(duì)于關(guān)系數(shù)據(jù)庫(kù)信息檢索的策略,國(guó)內(nèi)外專(zhuān)家學(xué)者提出了許多不同的觀點(diǎn)。其中,既有元組級(jí)別的又有對(duì)象級(jí)別的。關(guān)系數(shù)據(jù)庫(kù)中數(shù)據(jù)量的與日俱增,使得數(shù)據(jù)圖的規(guī)模越來(lái)越大,信息檢索的效率也越來(lái)越低。關(guān)系數(shù)據(jù)庫(kù)信息檢索領(lǐng)域面臨大數(shù)據(jù)的挑戰(zhàn),己成為一個(gè)不可回避的事實(shí)。 隨著圖數(shù)據(jù)庫(kù)技術(shù)的不斷成熟,其應(yīng)用領(lǐng)域正在不斷地?cái)U(kuò)大。與生俱來(lái)的靈活的圖模型不但滿(mǎn)足了社交類(lèi)網(wǎng)站的應(yīng)用需求,而且對(duì)圖算法的適應(yīng)能力也非常強(qiáng)。本文研究了圖數(shù)據(jù)庫(kù)技術(shù)和全文索引技術(shù),分析了對(duì)象級(jí)別信息檢索及其圖數(shù)據(jù)庫(kù)檢索的研究現(xiàn)狀,提出了一種由關(guān)系數(shù)據(jù)向圖數(shù)據(jù)轉(zhuǎn)換的數(shù)據(jù)抽取方式,并對(duì)現(xiàn)有的對(duì)象級(jí)別建模方式進(jìn)行了改進(jìn),設(shè)計(jì)了一個(gè)嵌入圖數(shù)據(jù)庫(kù)的對(duì)象級(jí)別信息檢索算法,相比元組級(jí)別的信息檢索方式,對(duì)象級(jí)別的檢索方式具有數(shù)據(jù)圖規(guī)模小、結(jié)果完整性高和無(wú)重復(fù)結(jié)果等優(yōu)點(diǎn)。該算法在考慮檢索關(guān)鍵詞的重要性的基礎(chǔ)上,采用啟發(fā)式的方式進(jìn)行了規(guī)則查詢(xún),結(jié)合了圖數(shù)據(jù)庫(kù)與關(guān)系數(shù)據(jù)庫(kù),為海量數(shù)據(jù)條件下進(jìn)行關(guān)系數(shù)據(jù)庫(kù)信息檢索提供了一種有效的解決方案,并拓展了圖數(shù)據(jù)庫(kù)的應(yīng)用領(lǐng)域。 為驗(yàn)證算法的有效性和原型系統(tǒng)的可用性,本文利用DBLP數(shù)據(jù)集對(duì)該算法的查詢(xún)效果和查詢(xún)效率進(jìn)行了實(shí)驗(yàn)驗(yàn)證。論文采用P@k對(duì)檢索效果進(jìn)行了驗(yàn)證,并對(duì)檢索效率進(jìn)行了對(duì)比和分析。最終的實(shí)驗(yàn)結(jié)果表明,圖數(shù)據(jù)庫(kù)對(duì)象級(jí)別關(guān)鍵詞檢索算法具有良好的檢索效果和較高的應(yīng)用前景。
[Abstract]:With the combination of relational database technology and information retrieval technology, it develops rapidly under the impetus of application requirements, so that users do not need to understand the complex structured query language and the underlying database schema. We can query the data in the database just like using the Web search engine. For the strategy of information retrieval in relational database, experts and scholars at home and abroad have put forward many different viewpoints. With the increasing of data volume in relational database, the scale of data graph is becoming larger and larger, and the efficiency of information retrieval is becoming lower and lower. The field of relational database information retrieval is facing the challenge of big data. Has become an unavoidable fact. With the development of graph database technology, its application field is expanding continuously. The inherent flexible graph model not only meets the application needs of social networking sites, Moreover, the adaptability of graph algorithm is very strong. This paper studies graph database technology and full-text index technology, and analyzes the research status of object level information retrieval and graph database retrieval. In this paper, a data extraction method from relational data to graph data is proposed, and the existing object level modeling method is improved, and an object level information retrieval algorithm based on embedded graph database is designed. Compared with tuple level information retrieval, object level retrieval has the advantages of small scale of data graph, high result integrity and no repetition. This paper adopts heuristic method to query rules, combines graph database with relational database, provides an effective solution for relational database information retrieval under the condition of massive data, and extends the application field of graph database. In order to verify the validity of the algorithm and the usability of the prototype system, the query effect and efficiency of the algorithm are verified by using DBLP dataset. Finally, the experimental results show that the object level keyword retrieval algorithm of graph database has good retrieval effect and high application prospect.
【學(xué)位授予單位】:大連海事大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類(lèi)號(hào)】:TP391.3;TP311.13

【參考文獻(xiàn)】

相關(guān)期刊論文 前5條

1 張俊;邵仁俊;曾一鳴;;對(duì)象級(jí)別的關(guān)系數(shù)據(jù)庫(kù)信息檢索技術(shù)研究[J];計(jì)算機(jī)科學(xué);2012年01期

2 邵仁俊;張俊;曾一鳴;;DBORank:對(duì)象級(jí)別的關(guān)系數(shù)據(jù)庫(kù)信息檢索方法[J];計(jì)算機(jī)科學(xué)與探索;2012年08期

3 孟小峰;慈祥;;大數(shù)據(jù)管理:概念、技術(shù)與挑戰(zhàn)[J];計(jì)算機(jī)研究與發(fā)展;2013年01期

4 李永春;丁華福;;Lucene的全文檢索的研究與應(yīng)用[J];計(jì)算機(jī)技術(shù)與發(fā)展;2010年02期

5 盧冬海;何先波;;淺析NoSQL數(shù)據(jù)庫(kù)[J];中國(guó)西部科技;2011年02期

,

本文編號(hào):1662329

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/sousuoyinqinglunwen/1662329.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)0f7b0***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com