天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 水利工程論文 >

考慮土體不均勻性的巖土工程可靠度分析

發(fā)布時(shí)間:2019-06-05 20:47
【摘要】:水利水電巖土工程包含多種不確定性因素,如巖土體參數(shù)不確定性、測量誤差導(dǎo)致的認(rèn)知不確定性和模型不確定性等,其中巖土體固有的不均勻性對巖土工程可靠度分析有重要的影響。由于土體普遍經(jīng)歷不同的地質(zhì)、環(huán)境和化學(xué)作用,這導(dǎo)致不同深度的土體特性參數(shù)如抗剪強(qiáng)度參數(shù)往往呈現(xiàn)隨深度變化的趨勢,然而,目前大多數(shù)巖土工程可靠度分析雖然考慮了土性參數(shù)空間變異性的影響,但是土性參數(shù)隨深度變化趨勢對巖土結(jié)構(gòu)物可靠度的影響還缺少深入的研究,如抗剪強(qiáng)度參數(shù)均值或標(biāo)準(zhǔn)差隨深度變化對巖土結(jié)構(gòu)物可靠度的影響規(guī)律等。另一方面,實(shí)際巖土工程中還存在另一種形式的巖土體不均勻性,即地層變異性。它表現(xiàn)為不同類型巖土材料的互相嵌套或一種類型土體材料在另一種較均質(zhì)土體材料中不規(guī)則出現(xiàn)。這種地層變異性在其他領(lǐng)域如石油勘探、地下水及污染物運(yùn)移研究中得到了足夠的重視。巖土工程領(lǐng)域雖然很早就意識(shí)到地層變異性對巖土工程安全的影響,如有研究表明地層變異性對滑坡分布和方向有重要影響。然而,地層變異性對于巖土工程可靠度的影響還未見研究。此外,石油勘探,地下水污染物運(yùn)移中都是采用基于大尺度分析的地層變異性模擬方法。對于大多數(shù)巖土結(jié)構(gòu)物來說,這種地層變異性模擬方法不一定適用。因此,亟需發(fā)展適用于巖土結(jié)構(gòu)物尺度的地層變異性模擬方法,在此基礎(chǔ)上探討地層變異性對巖土結(jié)構(gòu)物可靠度的影響規(guī)律。此外,現(xiàn)有的考慮空間變異性的邊坡可靠度分析大多關(guān)注邊坡失效概率的計(jì)算,對于空間變異性對邊坡失效模式的影響研究不夠深入,而邊坡最危險(xiǎn)滑動(dòng)面直接決定著邊坡失穩(wěn)的規(guī)模和尺寸,直接影響邊坡失效后果評(píng)估。非常有必要深入研究土體參數(shù)空間變異性對邊坡最危險(xiǎn)滑動(dòng)面分布規(guī)律的影響。針對上述3個(gè)關(guān)鍵科學(xué)問題,本文重點(diǎn)研究土體抗剪強(qiáng)度參數(shù)隨深度變化的空間變異性和地層變異性模擬方法,在此基礎(chǔ)上探討這兩種土體不均勻性對巖土結(jié)構(gòu)物可靠度的影響規(guī)律,同時(shí)研究土體參數(shù)空間變異性對邊坡最危險(xiǎn)滑動(dòng)面的影響。主要研究內(nèi)容包括:基于非平穩(wěn)隨機(jī)場的土體抗剪強(qiáng)度參數(shù)空間變異性建模方法、土體空間變異性對邊坡最危險(xiǎn)滑動(dòng)面的影響、考慮土體參數(shù)空間變異性的巖土結(jié)構(gòu)物可靠度分析方法、基于鉆孔資料的耦合馬爾可夫鏈水平方向轉(zhuǎn)移概率矩陣估計(jì)、考慮地層變異性的邊坡穩(wěn)定性分析方法。主要工作及結(jié)論如下:(1)闡述了考慮土體不均勻性的巖土工程可靠度分析的研究背景及意義,回顧了巖土參數(shù)不確定性的建模方法,指出了存在的問題和需要改進(jìn)的方向。歸納了考慮參數(shù)空間變異性的巖土工程可靠度分析方法及研究對象。簡要概述了地層變異性在巖土工程領(lǐng)域的研究現(xiàn)狀,分析了考慮地層變異性的巖土工程可靠度關(guān)鍵問題,介紹了馬爾可夫鏈模型在工程領(lǐng)域的應(yīng)用情況。(2)為了研究抗剪強(qiáng)度參數(shù)隨深度變化趨勢對巖土結(jié)構(gòu)物可靠度的影響,提出了表征抗剪強(qiáng)度參數(shù)空間變異性的非平穩(wěn)隨機(jī)場模型及其模擬方法。從經(jīng)驗(yàn)公式和實(shí)測數(shù)據(jù)兩方面驗(yàn)證了不排水抗剪強(qiáng)度參數(shù)和有效內(nèi)摩擦角隨土體深度變化的趨勢,指出了兩者非平穩(wěn)隨機(jī)場模型的差異,建立了不排水抗剪強(qiáng)度參數(shù)和有效內(nèi)摩擦角的非平穩(wěn)隨機(jī)場模型,為利用總應(yīng)力和有效應(yīng)力方法考慮參數(shù)隨深度變化趨勢的空間變異性奠定了一定的理論基礎(chǔ)。(3)針對考慮巖土體參數(shù)空間變異性的邊坡最危險(xiǎn)滑動(dòng)面分布特征問題,提出了考慮土體抗剪強(qiáng)度參數(shù)空間變異性的邊坡最危險(xiǎn)滑動(dòng)面確定方法,探討了土體抗剪強(qiáng)度參數(shù)的波動(dòng)范圍和變異系數(shù)對邊坡最危險(xiǎn)滑動(dòng)面分布規(guī)律的影響,揭示了抗剪強(qiáng)度參數(shù)空間變異性對邊坡最危險(xiǎn)滑動(dòng)面位置、規(guī)模和分布范圍的影響規(guī)律,為考慮土體參數(shù)空間變異性的邊坡破壞模式確定提供了有效的分析工具。(4)提出了考慮土體抗剪強(qiáng)度參數(shù)均值隨深度變化的無限長邊坡穩(wěn)定性概率分析方法,建立了表征土體抗剪強(qiáng)度參數(shù)空間變異性的非平穩(wěn)隨機(jī)場模型,探討了考慮土體抗剪強(qiáng)度參數(shù)空間變異性時(shí)邊坡失效概率和最危險(xiǎn)滑動(dòng)面的變化規(guī)律,以無限長不排水黏性土坡和摩擦/黏性土坡為例驗(yàn)證了所提方法的有效性,搜集了現(xiàn)實(shí)中實(shí)際滑坡案例驗(yàn)證了數(shù)值分析結(jié)果的正確性。研究成果為實(shí)際工程中大多數(shù)滑坡發(fā)生淺層破壞現(xiàn)象提供了有效依據(jù)。(5)提出了考慮土體不排水抗剪強(qiáng)度均值和標(biāo)準(zhǔn)差隨深度變化的地基穩(wěn)定性概率分析方法,闡明了土體不排水抗剪強(qiáng)度參數(shù)空間變異性對地基極限承載力的影響規(guī)律,系統(tǒng)地比較了不排水抗剪強(qiáng)度參數(shù)平穩(wěn)和非平穩(wěn)隨機(jī)場模型對地基極限承載力的影響。得出了忽略不排水抗剪強(qiáng)度參數(shù)隨深度變化趨勢將會(huì)明顯低估不排水條件下地基可靠度的重要結(jié)論,為改進(jìn)地基可靠度設(shè)計(jì)提供了方向。(6)針對巖土結(jié)構(gòu)物中地層變異性模擬問題,提出了一種新的耦合馬爾可夫鏈水平方向轉(zhuǎn)移概率矩陣估計(jì)方法,實(shí)現(xiàn)了巖土結(jié)構(gòu)物地層變異性的精細(xì)模擬。搜集了不同地區(qū)的鉆孔資料,檢驗(yàn)了土體狀態(tài)轉(zhuǎn)移的一階馬爾可夫性,驗(yàn)證了所提方法的有效性。在此基礎(chǔ)上,研究了土體狀態(tài)轉(zhuǎn)移馬爾可夫鏈水平方向轉(zhuǎn)移概率矩陣和豎直方向轉(zhuǎn)移概率矩陣的一般規(guī)律,實(shí)現(xiàn)了土體狀態(tài)轉(zhuǎn)移水平方向轉(zhuǎn)移概率矩陣的有效估計(jì),為巖土工程中地層變異性的模擬奠定了理論基礎(chǔ)。(7)提出了考慮地層變異性時(shí)邊坡穩(wěn)定安全系數(shù)分析方法,建立了基于鉆孔資料和耦合馬爾可夫鏈的地層變異性模型,基于有限元應(yīng)力法建立了考慮地層變異性時(shí)邊坡穩(wěn)定性概率分析方法。分析了不同鉆孔布置方案對邊坡穩(wěn)定安全系數(shù)不確定性的影響,建議了最外圍鉆孔距邊坡坡頂(或坡腳)的合適距離,闡明了鉆孔位置、數(shù)目對邊坡穩(wěn)定安全系數(shù)和最危險(xiǎn)滑動(dòng)面不確定性的影響規(guī)律,為地質(zhì)勘探方案設(shè)計(jì)提供了理論指導(dǎo)。
[Abstract]:The geotechnical engineering of water and water resources has many uncertainties, such as the uncertainty of the parameters of the rock and soil body, the cognitive uncertainty and the model uncertainty caused by the measurement error, etc., in which the inherent non-uniformity of the rock and soil body has an important influence on the reliability analysis of the geotechnical engineering. due to the different geological, environmental and chemical effects of the soil body, the soil property parameters such as shear strength parameters of different depths tend to exhibit a tendency to change with depth, however, At present, the reliability analysis of most geotechnical engineering has taken into account the influence of the spatial variability of the soil parameters, but the influence of the soil property parameters with the depth change trend on the reliability of the soil structure is still lacking. Such as the influence of the mean or standard deviation of the shear strength parameter on the reliability of the rock and soil structure with the depth change, and the like. On the other hand, there is another form of heterogeneity of the rock and soil in the practical geotechnical engineering, that is, the formation variability. It shows that the internesting of different types of rock and soil materials or one type of soil material is irregular in another relatively homogeneous soil material. Such formation variability has been given sufficient attention in other fields, such as oil exploration, groundwater and pollutant migration. Although the geotechnical engineering field has long been aware of the effect of formation variability on the safety of the geotechnical engineering, the study indicates that the formation variability has an important effect on the distribution and direction of the landslide. However, the effect of formation variability on the reliability of geotechnical engineering is not shown in the study. In addition, the formation variability simulation method based on large-scale analysis is adopted in the migration of oil and groundwater pollutants. For most rock-and-soil structures, this method of formation variability is not necessarily applicable. Therefore, it is urgent to develop a method for simulating the formation variability applicable to the scale of the rock and soil structure, and on this basis, the effect of formation variability on the reliability of the rock and soil structure is discussed. In addition, the existing slope reliability analysis considering the spatial variability is mostly concerned with the calculation of the failure probability of the slope, the influence of the spatial variability on the failure mode of the slope is not deep enough, and the most dangerous sliding surface of the slope directly determines the scale and the size of the slope failure, And directly influence the slope failure consequence assessment. It is necessary to study the effect of the spatial variability of soil parameters on the distribution of the most dangerous sliding surface of the slope. In view of the above three key scientific problems, this paper focuses on the spatial variability of the soil shear strength parameter with depth and the simulation method of the formation variability, and on the basis of this, the influence of the non-uniformity of the two soils on the reliability of the soil structure is discussed. The effect of the spatial variability of the soil parameters on the most dangerous sliding surface of the slope is also studied. The main research contents include the method of modeling the spatial variability of the shear strength of the soil in the non-stationary random field, the influence of the soil spatial variability on the most dangerous sliding surface of the slope, and the reliability analysis method of the soil-soil structure considering the spatial variability of the soil parameters, The method of slope stability analysis considering the formation variability is given based on the estimation of the probability matrix of the horizontal transfer probability of the coupled Markov chain based on the drilling data. The main work and conclusions are as follows: (1) The research background and significance of the reliability analysis of the geotechnical engineering considering the non-uniformity of the soil body are described, the modeling method of the uncertainty of the geotechnical parameters is reviewed, and the existing problems and the direction to be improved are pointed out. The reliability analysis method and the research object of the geotechnical engineering considering the spatial variability of the parameters are summarized. The present situation of the formation variability in the field of geotechnical engineering is briefly introduced, and the key problem of the reliability of the geotechnical engineering considering the formation variability is analyzed, and the application of the Markov chain model in the field of engineering is introduced. (2) In order to study the effect of the variation trend of shear strength on the reliability of the rock and soil structure, the non-stationary random field model and its simulation method to characterize the spatial variability of the shear strength parameter are put forward. The trend of the non-drained shear strength and the effective internal friction angle with the depth of the soil is verified from the empirical formula and the measured data, and the non-stationary random field model of the non-drained shear strength parameter and the effective internal friction angle is established by the difference between the non-smooth shear strength parameters and the effective internal friction angle. In order to use the total stress and effective stress method to consider the spatial variability of the parameters with the depth trend, a certain theoretical foundation is laid. (3) The method for determining the most dangerous sliding surface of the side slope considering the spatial variability of the shear strength of the soil is proposed in view of the problem of the distribution of the most dangerous sliding surface of the side slope considering the spatial variability of the rock and soil parameters. The influence of the fluctuation range and coefficient of variation of the shear strength parameter of soil on the distribution of the most dangerous sliding surface of the slope is discussed, and the influence of the spatial variability of the shear strength parameter on the position, scale and distribution of the most dangerous sliding surface of the slope is revealed. An effective analytical tool is provided to determine the slope failure mode of the spatial variability of soil parameters. (4) An infinite long slope stability probability analysis method considering the variation of the mean value of the shear strength of the soil body with the depth is put forward, and a non-stationary random field model for characterizing the spatial variability of the shear strength parameter of the soil body is established, The change law of slope failure probability and the most dangerous sliding surface in consideration of the spatial variability of the shear strength of the soil is discussed, and the effectiveness of the proposed method is verified by taking an infinite long non-drainage cohesive soil slope and a friction/ cohesive soil slope as an example. The correctness of the results of the numerical analysis is verified by the actual landslide case in the real world. The research results provide an effective basis for the occurrence of shallow damage in most landslides in the actual project. (5) The method of foundation stability probability analysis considering the mean and standard deviation of the non-drained shear strength of the soil and the variation of the standard deviation with the depth is put forward, and the influence of the spatial variability of the non-drainage shear strength of the soil on the ultimate bearing capacity of the foundation is clarified. The effect of undrained shear strength parameters on the ultimate bearing capacity of the foundation is systematically compared. It is concluded that ignoring the variation trend of the non-drained shear strength parameter with the depth will significantly undervalue the reliability of the foundation under the undrained condition, and provides a direction for improving the reliability design of the foundation. (6) In order to simulate the formation variability in the rock and soil structure, a new method for estimating the horizontal transfer probability matrix of the coupled Markov chain is proposed, and the fine simulation of the formation variability of the rock and soil structure is realized. The first-order Markov property of the state transition of the soil is checked, and the validity of the proposed method is verified. On the basis of this, the general rule of the transition probability matrix and the vertical direction transfer probability matrix of the state transition Markov chain of the soil is studied, and the effective estimation of the transfer probability matrix in the horizontal direction of the state of the soil is realized. It lays a theoretical foundation for the simulation of formation variability in geotechnical engineering. (7) The method of slope stability safety factor analysis based on borehole data and coupled Markov chain is put forward, and the method of slope stability probability analysis is established based on the finite element stress method. The influence of different drilling arrangement schemes on the uncertainty of the safety factor of the slope stability is analyzed, and the appropriate distance between the most peripheral drilling hole and the slope top (or toe) of the slope is proposed, the influence of the drilling position, the number of the number on the stability safety factor of the slope and the uncertainty of the most dangerous sliding surface is clarified. It provides the theoretical guidance for the design of geological exploration.
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TV223

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 曾志崧;互聯(lián)網(wǎng)上的巖土工程資源[J];工程勘察;2000年04期

2 龔曉南;21世紀(jì)巖土工程發(fā)展展望[J];巖土工程學(xué)報(bào);2000年02期

3 張遵葆;面向二十一世紀(jì)的巖土工程[J];巖土工程界;2000年01期

4 林鳳桐;巖土工程2000年展望[J];巖土工程界;2000年01期

5 黃潤秋,鄧輝,向喜瓊;巖土工程信息技術(shù)應(yīng)用(上)[J];巖土工程界;2001年06期

6 林宗元;再論巖土工程[J];巖土工程界;2002年06期

7 ;《巖土工程叢書》年內(nèi)出版[J];巖土工程界;2003年04期

8 李廣信;關(guān)于巖土工程考試的若干問題[J];巖土工程界;2003年05期

9 高大釗 ,莫群歡 ,顧寶和;巖土工程勘察規(guī)范與巖土工程行業(yè)新模式[J];巖土工程界;2003年08期

10 錢七虎;巖土工程領(lǐng)域若干工程途徑的辨證對比思考[J];巖土工程界;2003年10期

相關(guān)會(huì)議論文 前10條

1 張?jiān)诿?;巖土工程現(xiàn)狀與發(fā)展的初步探討[A];全國巖土與工程學(xué)術(shù)大會(huì)論文集(上冊)[C];2003年

2 王鐘琦;;巖土工程價(jià)值觀[A];全國巖土與工程學(xué)術(shù)大會(huì)論文集(上冊)[C];2003年

3 黃理興;;現(xiàn)代巖土工程與研究熱點(diǎn)[A];加入WTO和中國科技與可持續(xù)發(fā)展——挑戰(zhàn)與機(jī)遇、責(zé)任和對策(上冊)[C];2002年

4 馬建林;;德國巖土工程現(xiàn)狀和發(fā)展趨勢[A];第八次全國巖石力學(xué)與工程學(xué)術(shù)大會(huì)論文集[C];2004年

5 謝豪輝;;淺論巖土工程項(xiàng)目勘察方法及強(qiáng)化措施管理[A];建材建設(shè)工程優(yōu)秀論文集[C];2011年

6 錢七虎;;巖土工程的第四次浪潮[A];錢七虎院士論文選集[C];2007年

7 王鳳生;;巖土工程在國土資源勘察與開發(fā)過程中的地位和作用[A];全國巖土與工程學(xué)術(shù)大會(huì)論文集(下冊)[C];2003年

8 羅國煜;王培清;;略論巖土工程的國內(nèi)外發(fā)展趨勢[A];第一屆華東巖土工程學(xué)術(shù)大會(huì)論文集[C];1990年

9 ;巖土工程的特點(diǎn)與未來的創(chuàng)新發(fā)展——《巖土工程界》期刊采訪談[A];盛世歲月——祝賀孫鈞院士八秩華誕論文選集[C];2006年

10 羅國煜;王培清;;略論巖土工程的國內(nèi)外發(fā)展趨勢[A];巖土力學(xué)數(shù)值方法的工程應(yīng)用——第二屆全國巖石力學(xué)數(shù)值計(jì)算與模型實(shí)驗(yàn)學(xué)術(shù)研討會(huì)論文集[C];1990年

相關(guān)重要報(bào)紙文章 前10條

1 徐敏;巖土工程也能有“創(chuàng)意”[N];建筑時(shí)報(bào);2007年

2 記者 樊曉麗;北屯新區(qū)巖土工程外業(yè)勘察工作結(jié)束[N];阿勒泰日報(bào);2009年

3 李玉明;中日巖土工程研討會(huì)召開[N];中華建筑報(bào);2005年

4 顧今;探討全球巖土工程未來發(fā)展方向[N];建筑時(shí)報(bào);2008年

5 夏云冰;云南“第一高樓”巖土工程開工[N];地質(zhì)勘查導(dǎo)報(bào);2009年

6 周獻(xiàn)恩;到巖土工程領(lǐng)域“淘金”去[N];中國交通報(bào);2004年

7 記者 王巧然 通訊員 劉敦海 信明亮;走向國際:從世界火爐出發(fā)[N];中國石油報(bào);2006年

8 宋榮俊;在轉(zhuǎn)型升級(jí)中揚(yáng)帆[N];中煤地質(zhì)報(bào);2010年

9 記者 李峰;土力學(xué)及巖土工程學(xué)術(shù)會(huì)在蘭舉行[N];甘肅日報(bào);2011年

10 張平 傅秋瑛;青出于藍(lán) 心靜如水[N];科技日報(bào);2004年

相關(guān)博士學(xué)位論文 前9條

1 祁小輝;考慮土體不均勻性的巖土工程可靠度分析[D];武漢大學(xué);2015年

2 莫時(shí)雄;典型金屬礦山巖土工程環(huán)境評(píng)價(jià)體系與預(yù)警系統(tǒng)研究[D];中南大學(xué);2008年

3 常斌;基于數(shù)值仿真試驗(yàn)的巖土工程智能化方法及應(yīng)用研究[D];西安理工大學(xué);2005年

4 陳斌;巖土工程隨機(jī)反演分析及工程應(yīng)用[D];河海大學(xué);2001年

5 靳曉光;山區(qū)公路建設(shè)中的巖土工程監(jiān)測與信息化控制[D];成都理工學(xué)院;2000年

6 唐烈先;RFPA離心機(jī)法在巖土工程破壞分析中的應(yīng)用研究[D];東北大學(xué);2008年

7 毛堅(jiān)強(qiáng);接觸問題的一種有限元計(jì)算方法及其在巖土工程中的應(yīng)用[D];西南交通大學(xué);2002年

8 雷曉燕;三維彈塑性,,彈粘塑性有限元與邊界元耦合數(shù)值方法及其在巖土工程中的應(yīng)用[D];清華大學(xué);1989年

9 陳陸望;物理模型試驗(yàn)技術(shù)研究及其在巖土工程中的應(yīng)用[D];中國科學(xué)院研究生院(武漢巖土力學(xué)研究所);2006年

相關(guān)碩士學(xué)位論文 前10條

1 陸特;[D];天津大學(xué);2013年

2 廖艷程;巖土工程中的小波(包)分析理論及其應(yīng)用[D];長沙理工大學(xué);2010年

3 鄭艷平;巖土工程監(jiān)理技術(shù)方法探討[D];河北工程大學(xué);2012年

4 白林慶;巖土工程專項(xiàng)監(jiān)理技術(shù)方法研究[D];山東大學(xué);2008年

5 宋祥紅;巖土工程網(wǎng)絡(luò)教學(xué)資源庫的開發(fā)[D];長安大學(xué);2005年

6 孫志東;城市三維巖土工程信息系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];北京大學(xué);2008年

7 劉立兵;鄭州市巖土工程特征及對策研究[D];中國海洋大學(xué);2003年

8 楊艷;多年凍土地區(qū)巖土工程數(shù)據(jù)管理研究[D];西安理工大學(xué);2009年

9 和法國;巖土工程加固新材料試驗(yàn)研究[D];蘭州大學(xué);2006年

10 丁為;華能大廈巖土工程項(xiàng)目技術(shù)風(fēng)險(xiǎn)評(píng)價(jià)及控制[D];吉林大學(xué);2013年



本文編號(hào):2493812

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2493812.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6dbb4***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com
精品日韩国产高清毛片| 久久老熟女一区二区三区福利| 国产女优视频一区二区| 中国美女偷拍福利视频| 亚洲一区二区三区一区| 亚洲男人的天堂久久a| 99日韩在线视频精品免费| 免费一级欧美大片免费看| 在线观看国产午夜福利| 东京热一二三区在线免| 精品一区二区三区乱码中文| 热久久这里只有精品视频| 亚洲淫片一区二区三区| 久草视频这里只是精品| 亚洲中文字幕综合网在线| 一区二区福利在线视频| 日韩一区二区三区在线日| 91精品视频全国免费| 日韩精品日韩激情日韩综合| 欧美日韩在线第一页日韩| 九九热视频网在线观看| 亚洲av日韩一区二区三区四区 | 精品熟女少妇一区二区三区| 日本加勒比在线观看一区| 草草视频精品在线观看| 亚洲综合天堂一二三区| 亚洲中文字幕视频一区二区| 激情丁香激情五月婷婷| 麻豆最新出品国产精品| 黄色日韩欧美在线观看| 欧洲偷拍视频中文字幕| 亚洲日本加勒比在线播放| 最新午夜福利视频偷拍| 最近的中文字幕一区二区| 91熟女大屁股偷偷对白| 免费特黄欧美亚洲黄片| 在线日本不卡一区二区| 五月天丁香婷婷狠狠爱| 欧美黄色成人真人视频| 午夜精品麻豆视频91| 中文字幕日产乱码一区二区|