基于FastICA-EEMD的振動信號特征提取
[Abstract]:In order to solve the problem that the vibration signals of hydro-generator set interact with each other and are vulnerable to noise interference, a fault feature extraction method based on fast independent component analysis (FastICA) and set empirical mode decomposition (EEMD) is proposed. Firstly, the original signal is separated into several independent components by using fast independent component analysis (ICA). Then each component is decomposed by set empirical mode. According to the two parameters of normalization energy and normalization correlation coefficient, the effective intrinsic modal component (IMF); is selected and reconstructed to obtain the corresponding fault characteristics. Through simulation and example analysis, and compared with other methods, the results show that this method can effectively suppress noise interference, extract vibration characteristic signals of hydro-generator set more comprehensively and accurately, and meet the needs of practical engineering.
【作者單位】: 西安理工大學(xué)水利水電學(xué)院;甘肅省電力科學(xué)研究院;
【基金】:國家自然科學(xué)基金(51279161) 陜西省水利科技計劃項目(2015slkj-04) 電網(wǎng)公司科技項目(522722150012)
【分類號】:TV738
【相似文獻】
相關(guān)期刊論文 前10條
1 陳岳東,,屈梁生;回轉(zhuǎn)機械的故障特征提取與分類[J];機械工程學(xué)報;1994年S1期
2 高正明;何彬;趙娟;裴永泉;左廣霞;;常用故障特征提取方法[J];機床與液壓;2009年12期
3 李兆飛;柴毅;李華鋒;;多重分形的振動信號故障特征提取方法[J];數(shù)據(jù)采集與處理;2013年01期
4 韓立靜;徐金梧;陽建宏;黎敏;;基于灰度擊中擊不中變換的故障特征提取方法[J];北京科技大學(xué)學(xué)報;2012年07期
5 李輝,宋智勇,孫豐瑞;基于小波包-包絡(luò)分析的故障特征提取方法[J];振動、測試與診斷;2003年04期
6 李學(xué)軍;廖傳軍;褚福磊;;適于聲發(fā)射信號故障特征提取的小波函數(shù)[J];機械工程學(xué)報;2008年03期
7 梅檢民;肖云魁;賈繼德;趙慧敏;陳祥龍;喬龍;;基于改進階比的變速器微弱故障特征提取[J];振動工程學(xué)報;2012年03期
8 任立通;胡金海;謝壽生;王磊;苗卓廣;;基于隨機共振預(yù)處理的振動故障特征提取研究[J];振動與沖擊;2014年02期
9 陳長征,羅躍綱,張省,虞和濟;基于小波分析的機械故障特征提取研究[J];機械強度;2001年01期
10 郝志華;馬孝江;;高階非線性時頻表示在故障特征提取中的應(yīng)用[J];農(nóng)業(yè)機械學(xué)報;2006年02期
相關(guān)會議論文 前3條
1 趙志宏;楊紹普;;一種基于ICA的機械故障特征提取方法[A];機械動力學(xué)理論及其應(yīng)用[C];2011年
2 潘宏俠;黃晉英;毛鴻偉;劉振旺;;基于粒子群優(yōu)化的故障特征提取技術(shù)研究[A];第九屆全國振動理論及應(yīng)用學(xué)術(shù)會議論文摘要集[C];2007年
3 朱啟兵;楊慧中;;基于卷積型小波包奇異值分解的齒輪故障特征提取[A];第二十七屆中國控制會議論文集[C];2008年
相關(guān)博士學(xué)位論文 前10條
1 蔣超;基于EEMD與MED的沖擊信號自適應(yīng)故障特征提取方法[D];上海大學(xué);2016年
2 程發(fā)斌;面向機械故障特征提取的混合時頻分析方法研究[D];重慶大學(xué);2007年
3 馮坤;基于內(nèi)積變換的機械故障特征提取原理與早期識別方法研究[D];北京化工大學(xué);2012年
4 李加慶;基于聲全息的故障特征提取技術(shù)研究[D];上海交通大學(xué);2008年
5 趙玲;旋轉(zhuǎn)機械系統(tǒng)故障特征提取中的分形方法研究[D];重慶大學(xué);2010年
6 陳建國;基于獨立分量分析的機械故障特征提取及分類方法研究[D];大連理工大學(xué);2011年
7 李兆飛;振動故障分形特征提取及診斷方法研究[D];重慶大學(xué);2013年
8 鞠萍華;旋轉(zhuǎn)機械早期故障特征提取的時頻分析方法研究[D];重慶大學(xué);2010年
9 趙志宏;基于振動信號的機械故障特征提取與診斷研究[D];北京交通大學(xué);2012年
10 趙鵬;離心泵振動故障診斷方法研究及系統(tǒng)實現(xiàn)[D];華北電力大學(xué)(北京);2011年
相關(guān)碩士學(xué)位論文 前10條
1 薄瑞瑞;基于LMD的振動信號處理及故障特征提取研究[D];內(nèi)蒙古大學(xué);2015年
2 凡非龍;旋轉(zhuǎn)機械故障診斷與現(xiàn)場動平衡系統(tǒng)研發(fā)[D];浙江大學(xué);2015年
3 屈紅偉;基于LMD的故障特征提取方法及動平衡技術(shù)研究[D];北京化工大學(xué);2015年
4 李嶺陽;基于非線性分析的故障特征提取及識別方法研究[D];北京化工大學(xué);2016年
5 沈金理;機械裝備連接松動故障特征提取方法的研究[D];東華大學(xué);2013年
6 李敏;基于譜融合的管道故障特征提取方法研究[D];北京化工大學(xué);2011年
7 易雄;基于小波分析的機械故障特征提取與診斷技術(shù)研究[D];浙江工業(yè)大學(xué);2009年
8 鐘曉平;氣象衛(wèi)星運動部件故障特征提取及振動特性研究[D];上海交通大學(xué);2009年
9 宋震;柴油機典型故障特征提取與診斷研究[D];天津大學(xué);2013年
10 王澤棟;鉆井泵閥的故障特征提取與基于GSM的遠程故障報警儀[D];北京化工大學(xué);2008年
本文編號:2491054
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2491054.html