天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 水利工程論文 >

水泵水輪機(jī)調(diào)節(jié)系統(tǒng)穩(wěn)態(tài)與典型暫態(tài)過(guò)程穩(wěn)定性分析

發(fā)布時(shí)間:2019-01-09 12:24
【摘要】:抽水蓄能電站可將電網(wǎng)負(fù)荷較低時(shí)的多余電能,轉(zhuǎn)化為電網(wǎng)高峰期的高價(jià)值電能,同時(shí)還具有調(diào)頻調(diào)相和事故備用等多種功能,亦可提高風(fēng)電、火電和核電的利用效率,在電力系統(tǒng)中發(fā)揮著越來(lái)越重要的作用。水泵水輪機(jī)調(diào)節(jié)系統(tǒng)作為抽水蓄能電站的核心,研究其運(yùn)行穩(wěn)定性對(duì)維持電站安全、穩(wěn)定和經(jīng)濟(jì)運(yùn)行具有重要作用。以往對(duì)抽水蓄能機(jī)組的研究主要集中于水泵水輪機(jī),很少將其納入整個(gè)調(diào)節(jié)系統(tǒng)的框架下,也無(wú)法揭示其深入的動(dòng)力學(xué)演化機(jī)理。本文從系統(tǒng)工程學(xué)角度出發(fā),對(duì)調(diào)節(jié)系統(tǒng)穩(wěn)態(tài)和兩種典型暫態(tài)過(guò)程進(jìn)行了微分?jǐn)?shù)學(xué)建模和穩(wěn)定性分析,借助分岔圖、時(shí)域圖和相軌跡圖進(jìn)行數(shù)值模擬,驗(yàn)證了理論結(jié)果的正確性。論文的主要研究?jī)?nèi)容及結(jié)論如下:(1)考慮壓力管道水力摩阻和彈性水擊效應(yīng),建立了水泵水輪機(jī)調(diào)節(jié)系統(tǒng)的穩(wěn)態(tài)模型;推導(dǎo)出泵工況下傳遞系數(shù)的表達(dá)式,結(jié)合潘家口抽水蓄能電站的系統(tǒng)參數(shù),計(jì)算出泵額定工況下傳遞系數(shù)值;運(yùn)用穩(wěn)定性定理,借助MATLAB工具計(jì)算出系統(tǒng)PID調(diào)節(jié)參數(shù)的穩(wěn)定域,通過(guò)數(shù)值模擬驗(yàn)證了所得結(jié)果的正確性;對(duì)比分析了有無(wú)水力摩阻對(duì)系統(tǒng)穩(wěn)定域的影響,結(jié)果表明:水力摩阻對(duì)維持系統(tǒng)穩(wěn)定運(yùn)行是有利的,同時(shí),研究并給出幾種參數(shù)取值不同時(shí)穩(wěn)定域的變化規(guī)律;最后對(duì)比分析了水輪機(jī)和水泵工況下的穩(wěn)定域范圍,結(jié)果顯示,前者的調(diào)節(jié)參數(shù)穩(wěn)定域通常較后者要小。(2)結(jié)合實(shí)際抽水蓄能電站泵工況斷電的運(yùn)行曲線,截取若干時(shí)間點(diǎn)計(jì)算出相應(yīng)的傳遞系數(shù)的值,得到傳遞系數(shù)隨時(shí)間變化的表達(dá)式,從而獲得調(diào)節(jié)系統(tǒng)泵工況斷電暫態(tài)過(guò)程的動(dòng)態(tài)數(shù)學(xué)模型,通過(guò)數(shù)值模擬分析了不同時(shí)間點(diǎn)系統(tǒng)的穩(wěn)定性,結(jié)果表明導(dǎo)葉關(guān)閉速率對(duì)調(diào)節(jié)系統(tǒng)的穩(wěn)定性具有重要影響。其次,做出穩(wěn)定域隨時(shí)間變化的三維圖和二維圖,結(jié)果顯示:在該暫態(tài)過(guò)程中,穩(wěn)定域隨著時(shí)間的增加先減小后增大。并得到了穩(wěn)定域范圍最小的時(shí)刻,即最不利時(shí)間點(diǎn)。(3)針對(duì)上游有調(diào)壓室的水泵水輪機(jī)調(diào)節(jié)系統(tǒng)甩負(fù)荷導(dǎo)葉拒動(dòng)暫態(tài)過(guò)程建立了微分?jǐn)?shù)學(xué)模型,然后推導(dǎo)出水泵水輪機(jī)的飛逸穩(wěn)定性條件,其特性曲線在飛逸工況點(diǎn)處的斜率是決定飛逸穩(wěn)定性的重要因素。最后,結(jié)合模型全特性曲線,得到水輪機(jī)、水輪機(jī)制動(dòng)和反水泵三種工況下系統(tǒng)關(guān)于相對(duì)轉(zhuǎn)速的動(dòng)態(tài)模型,通過(guò)分岔圖研究了系統(tǒng)反“S”區(qū)的穩(wěn)定性,結(jié)果表明:穩(wěn)定運(yùn)行區(qū)主要集中在水輪機(jī)和反水泵工況,不穩(wěn)定區(qū)主要集中在制動(dòng)工況。
[Abstract]:Pumped-storage power station can convert excess electric energy from low load to high-value electric energy during peak period of power grid, at the same time, it also has many functions such as frequency modulation and phase modulation and accident standby, and can also improve the utilization efficiency of wind power, thermal power and nuclear power. It plays a more and more important role in power system. As the core of pumped storage power station, pump turbine regulation system plays an important role in maintaining the safety, stability and economic operation of the power station. In the past, the research on pumped-storage units was mainly focused on pump turbines, and it was rarely incorporated into the framework of the whole governing system, nor could it reveal the mechanism of its dynamic evolution. In this paper, from the point of view of system engineering, differential mathematical modeling and stability analysis of steady state and two typical transient processes of regulating system are carried out, and numerical simulation is carried out by means of bifurcation diagram, time domain diagram and phase trajectory diagram. The correctness of the theoretical results is verified. The main research contents and conclusions are as follows: (1) considering hydraulic friction and elastic water hammer effect of pressure pipeline, the steady state model of pump turbine regulating system is established; The expression of transfer coefficient under pump condition is deduced, and the transfer coefficient under rated condition is calculated with the system parameters of Panjiakou Pumped-storage Power Station. By using the stability theorem and the MATLAB tool, the stability region of the system PID adjustment parameters is calculated, and the correctness of the obtained results is verified by numerical simulation. The effects of hydraulic friction on the stability region of the system are compared and analyzed. The results show that the hydraulic friction is beneficial to maintain the stable operation of the system. At the same time, the variation of several parameters in different stability regions is studied and given. Finally, the stability range of turbine and pump are compared and analyzed. The results show that the stability range of the former is usually smaller than that of the latter. (2) combined with the operation curve of pump failure in actual pumped storage power station, By intercepting some time points to calculate the corresponding transfer coefficient, the expression of the transfer coefficient varying with time is obtained, and the dynamic mathematical model of the transient process of pump power failure in regulating system is obtained. The stability of the system at different time points is analyzed by numerical simulation. The results show that the closing rate of the guide vane has an important effect on the stability of the regulating system. Secondly, the three dimensional and two dimensional diagrams of the stability region varying with time are made. The results show that the stability region decreases first and then increases with the increase of time in the transient process. At the same time, the minimum time in the stability region is obtained, that is, the most unfavorable time point. (3) the differential mathematical model is established for the transient process of load rejection and guide vane rejection in a pump turbine governing system with an upstream surge chamber. Then the flight stability condition of water pump turbine is deduced. The slope of the characteristic curve at the point of flight escape is an important factor to determine the flight escape stability. Finally, combined with the full characteristic curve of the model, the dynamic model of the relative rotational speed of the system under three working conditions of turbine, turbine braking and backwater pump is obtained, and the stability of the inverse "S" region of the system is studied by bifurcation diagram. The results show that the stable operation zone is mainly concentrated in the turbine and reverse pump conditions, and the unstable zone is mainly concentrated in the braking condition.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TV743;TV734

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 WalterL.Swift;王述羲;;運(yùn)用計(jì)算機(jī)改善水輪機(jī)和水泵水輪機(jī)的設(shè)計(jì)工作[J];大電機(jī);1973年01期

2 陳德新,謝輝;低比速水泵水輪機(jī)“S”特性區(qū)的內(nèi)部流動(dòng)[J];水利學(xué)報(bào);2001年02期

3 胡旭光;水泵水輪機(jī)不穩(wěn)定性運(yùn)行的初步探討[J];水電站機(jī)電技術(shù);2001年02期

4 何文才;惠州抽水蓄能電站工程水泵水輪機(jī)轉(zhuǎn)速的選擇[J];中國(guó)農(nóng)村水利水電;2005年06期

5 何文才;惠州抽水蓄能電站水泵水輪機(jī)轉(zhuǎn)速的選擇[J];廣東水利電力職業(yè)技術(shù)學(xué)院學(xué)報(bào);2005年02期

6 陶喜群;;國(guó)外公司水泵水輪機(jī)和進(jìn)口閥門(mén)結(jié)構(gòu)技術(shù)[J];東方電機(jī);2005年02期

7 何文才;;惠州抽水蓄能電站工程水泵水輪機(jī)轉(zhuǎn)速的選擇[J];廣東水利水電;2008年07期

8 金宗銘;羅遠(yuǎn)紅;李劍云;;惠州抽水蓄能電站水泵水輪機(jī)結(jié)構(gòu)特點(diǎn)[J];東方電機(jī);2009年02期

9 付之躍;劉偉超;鄭津生;胡江藝;唐榮;;東方電機(jī)水泵水輪機(jī)水力開(kāi)發(fā)的技術(shù)進(jìn)步[J];東方電機(jī);2010年01期

10 熊濤;;宜興抽水蓄能電站水泵水輪機(jī)性能與結(jié)構(gòu)特點(diǎn)[J];水電站機(jī)電技術(shù);2010年05期

相關(guān)會(huì)議論文 前10條

1 金宗銘;羅遠(yuǎn)紅;李劍云;;惠州抽水蓄能電站水泵水輪機(jī)結(jié)構(gòu)特點(diǎn)[A];抽水蓄能電站工程建設(shè)文集(2009)[C];2009年

2 傅之躍;劉偉超;鄭津生;胡江藝;;東方電機(jī)水泵水輪機(jī)水力開(kāi)發(fā)的技術(shù)進(jìn)步[A];抽水蓄能電站工程建設(shè)文集(2010)[C];2010年

3 熊濤;;宜興抽水蓄能電站水泵水輪機(jī)性能與結(jié)構(gòu)特點(diǎn)[A];抽水蓄能電站工程建設(shè)文集(2010)[C];2010年

4 王煥茂;吳鋼;吳偉章;魏顯著;陳元林;黎輝;;低比速水泵水輪機(jī)駝峰區(qū)數(shù)值模擬及分析7[A];2009全國(guó)大型泵站更新改造研討暨新技術(shù)、新產(chǎn)品交流大會(huì)論文集[C];2009年

5 嚴(yán)麗;李成軍;;宜興抽水蓄能電站水泵水輪機(jī)技術(shù)和輔助設(shè)備系統(tǒng)設(shè)計(jì)[A];抽水蓄能電站工程建設(shè)文集(2009)[C];2009年

6 陳順義;李成軍;周杰;沈劍初;邱紹平;鄭應(yīng)霞;;水泵水輪機(jī)穩(wěn)定性預(yù)判和對(duì)策[A];抽水蓄能電站工程建設(shè)文集(2011)[C];2011年

7 陳順義;李成軍;周杰;沈劍初;邱紹平;鄭應(yīng)霞;;水泵水輪機(jī)穩(wěn)定性預(yù)判和對(duì)策[A];抽水蓄能電站工程建設(shè)文集2011[C];2011年

8 周忠浩;熊建平;;清遠(yuǎn)水泵水輪機(jī)蝸殼水壓試驗(yàn)和保壓澆筑技術(shù)特點(diǎn)[A];第十九次中國(guó)水電設(shè)備學(xué)術(shù)討論會(huì)論文集[C];2013年

9 鄭建興;張俊芝;曾再祥;曾維才;黃金樹(shù);;黑麋峰水電站水泵水輪機(jī)模型驗(yàn)收試驗(yàn)及主要性能分析[A];水電設(shè)備的研究與實(shí)踐——第十七次中國(guó)水電設(shè)備學(xué)術(shù)討論會(huì)論文集[C];2009年

10 王泉龍;;抽水蓄能電站水泵水輪機(jī)設(shè)計(jì)淺析[A];抽水蓄能電站工程建設(shè)文集(2010)[C];2010年

相關(guān)博士學(xué)位論文 前5條

1 楊桀彬;基于空間曲面的水泵水輪機(jī)全特性及過(guò)渡過(guò)程的研究[D];武漢大學(xué);2014年

2 孫躍昆;低比轉(zhuǎn)速水泵水輪機(jī)駝峰穩(wěn)定性及其影響因素研究[D];清華大學(xué);2016年

3 尹俊連;水泵水輪機(jī)“S”區(qū)內(nèi)流機(jī)理及優(yōu)化設(shè)計(jì)研究[D];浙江大學(xué);2012年

4 紀(jì)興英;水泵水輪機(jī)“S”特性預(yù)測(cè)方法研究[D];武漢大學(xué);2013年

5 劉錦濤;基于非線性局部時(shí)均化模型的水泵水輪機(jī)“S”區(qū)穩(wěn)定性分析[D];浙江大學(xué);2013年

相關(guān)碩士學(xué)位論文 前10條

1 朱偉;水泵水輪機(jī)S特性形成機(jī)理的水動(dòng)力學(xué)分析[D];清華大學(xué);2015年

2 姚洋陽(yáng);水泵水輪機(jī)泵工況駝峰特性流動(dòng)機(jī)理數(shù)值研究[D];清華大學(xué);2015年

3 李威;水泵水輪機(jī)“S”區(qū)的瞬態(tài)特性研究[D];哈爾濱工業(yè)大學(xué);2016年

4 陸杰;水泵水輪機(jī)“S”形區(qū)內(nèi)流特性研究[D];武漢大學(xué);2017年

5 韓冬冬;可逆式水泵水輪機(jī)全流道三維非定常數(shù)值模擬[D];昆明理工大學(xué);2017年

6 何曉林;水泵水輪機(jī)內(nèi)部流動(dòng)及水力特性[D];華南理工大學(xué);2012年

7 舒]峰;水泵水輪機(jī)駝峰區(qū)與“S”區(qū)數(shù)值模擬研究[D];哈爾濱工業(yè)大學(xué);2013年

8 劉星星;水泵水輪機(jī)過(guò)渡過(guò)程半實(shí)物仿真平臺(tái)的軟件設(shè)計(jì)與實(shí)現(xiàn)[D];華中科技大學(xué);2013年

9 王煥茂;混流式水泵水輪機(jī)駝峰區(qū)數(shù)值模擬及試驗(yàn)研究[D];華中科技大學(xué);2009年

10 楊欣;水泵水輪機(jī)全特性空間曲面描述與水力過(guò)渡過(guò)程調(diào)節(jié)控制研究[D];華中科技大學(xué);2012年

,

本文編號(hào):2405623

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2405623.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶51874***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com