洞內(nèi)淹沒射流與水平旋流梯級內(nèi)消能泄洪洞的水力特性研究
[Abstract]:The problem of high speed flow has always been a difficult problem for high dam flood discharge and energy dissipation. In the face of high head flood discharge energy dissipation, no matter what kind of single internal energy dissipator is adopted, it will encounter some more difficult difficulties, and it will be difficult to overcome in the reconstruction of diversion tunnel. Because of the limitation of the application condition of the deep water gate, it is impossible to transform the diversion tunnel into a flood discharge tunnel and also to release the hole simultaneously, which is the need of many water conservancy and hydropower projects. Therefore, a new type of compound inner energy dissipator named "submerged jet and horizontal swirl cascade energy dissipator" is proposed, which can solve the above problems. The cascade inner energy dissipator is mainly composed of the first stage submerged jet energy dissipator and the second stage horizontal swirl energy dissipator. This paper deals with the basic flow pattern, velocity of flow, wall pressure, jet recovery length, ventilation rate of the ventilation hole in the swirl tunnel. The hydraulic characteristics of swirl cavity diameter and swirl angle are measured and the hydraulic characteristics and energy dissipation mechanism of the dissipator are analyzed. The main results are as follows: 1. The new cascade inner energy dissipator can ensure that the water level in the shaft is higher than the top elevation of the tail water tunnel in the jet section, and the flow pattern of each part of the model is relatively stable in the course of operation, which can be applied to flood discharge and energy dissipation at high water head. The flow velocity and wall pressure in the spillway tunnel show the characteristics of zonal variation in each part of the upstream jet section and downstream swirl section, and the jet orifice section and the swirl block section change sharply. The velocity distribution of cavity swirl in swirl section approximately accords with the distribution law of quasi-free vortex. 3. The aeration volume is obviously affected by the variation of the downstream water level, and the ventilation volume of the tail water tunnel is larger when the flow is free, and decreases obviously when the downstream outlet is submerged, but the ventilation volume does not decrease obviously with the increase of the downstream water level after the inundation. 4. Through the jet section, a part of the flow energy is consumed, which reduces the acting head of the swirl section, and makes a high head energy dissipation problem become a multistage low water head problem. It can be applied to flood discharge and energy dissipation over 100 m or higher head. The total energy dissipation rate of this type is 75% of the total water head, in which the first stage of jet accounts for 1510% of the total head of water, and the second stage of swirl accounts for 55% of the total head of water.
【學位授予單位】:西安理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TV135.2
【參考文獻】
相關期刊論文 前10條
1 郭軍;高季章;;有關高水頭大流量泄洪消能設施運行安全問題的思考[J];水力發(fā)電學報;2013年05期
2 曹雙利;郭開開;牛爭鳴;;大坡降旋流復合內(nèi)消能泄洪洞水力特性研究[J];水力發(fā)電;2013年04期
3 鄔海波;趙振興;;水平旋流式內(nèi)消能泄洪洞數(shù)值模擬分析[J];人民長江;2011年05期
4 余挺;田忠;王韋;許唯臨;;收縮式洞塞泄洪洞的消能和空化特性[J];水利學報;2011年02期
5 李永業(yè);孫西歡;李飛;束德方;;管道消能研究概述[J];電力學報;2010年02期
6 曹雙利;牛爭鳴;付波;吳小麗;;豎井進流水平旋轉(zhuǎn)內(nèi)消能泄洪洞的數(shù)值模擬[J];西安理工大學學報;2009年03期
7 牛爭鳴;安豐勇;余挺;周永;付波;;旋流阻塞復合式泄洪洞的水力特性(2)[J];長江科學院院報;2008年04期
8 牛爭鳴;安豐勇;周永;余挺;付波;;旋流阻塞復合式泄洪洞的水力特性(1)[J];長江科學院院報;2008年02期
9 汪振;牛爭鳴;李嘉;高旭東;;水平旋流內(nèi)消能泄洪洞的壁面壓強及脈動特性[J];四川大學學報(工程科學版);2008年01期
10 董興林;楊開林;王濤;胡孟;馮賓春;郭永鑫;;公伯峽水電站旋流泄洪洞研究總結(jié)[J];水力發(fā)電;2008年01期
相關會議論文 前1條
1 董興林;郭軍;;導流洞改建旋渦豎井式泄洪洞研究[A];面向21世紀的科技進步與社會經(jīng)濟發(fā)展(下冊)[C];1999年
相關博士學位論文 前1條
1 蘆綺玲;壓力輸水管道出口多孔射流消能特性研究與工程應用[D];西安理工大學;2008年
相關碩士學位論文 前2條
1 王瀅;圓形深筒式消力井試驗及消能機理研究[D];新疆農(nóng)業(yè)大學;2005年
2 曹雙利;旋流條件下通氣孔通風量和環(huán)流空腔內(nèi)氣體壓強的變化規(guī)律[D];西安理工大學;2005年
,本文編號:2359362
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2359362.html