雙超產(chǎn)流模型參數(shù)敏感性分析與率定
[Abstract]:With the development of flood forecast science, the hydrological model has been widely used to solve the problems of social and human development, including hydrology, water resources, environment and ecology. The data of the rain and flood in the wet area of the south is rich, and more work can be done in the study of the hydrological model of the river basin, and the calculation method is also mature. However, for the semi-arid area, which is 52% of the territory of our country, the work of the hydrological model is less, and the use of the hydrological model in the basin is a problem both at home and abroad in the semi-arid area. The double supermodel is especially suitable for semi-humid and semi-arid areas, and should be given full attention as the first choice model of the flood forecast. At the present stage, the sensitivity and the rate of the double supermodel parameters are poor, and the accurate model information can not be provided for all levels of government and flood control departments. it is difficult to meet the demand of the flood forecast parameter rate. In this paper, a double super-production flow model is used as the research object, the sensitivity analysis of the model parameters is carried out, the important influence parameters of the output response of the model are identified, the blindness in the process of determining the model parameter rate is reduced, and the system for determining the flood classification parameter rate of the small watershed in Shanxi Province is established, and the reliability and the prediction precision of the model operation are improved. In this paper, the two-supermodel parameter sensitivity analysis of the representative field flood in each basin is selected as the object of the study on the control of the basin as the study object in Yulin, Shangjing and Lou. The sensitivity and correlation of the two supermodel parameters in different river basins, different grades of flood and multiple target functions are obtained firstly, and the comprehensive sensitivity coefficient of the model parameters is determined based on the coefficient of variation method. By using the optimized LH-OAT method, the sensitivity and the correlation of the two supermodel parameters under different river basins, different grade floods and multiple target functions are obtained, and the comprehensive sensitivity coefficient of the model parameters is determined based on the entropy value method. The results of the two methods are compared and analyzed. The results show that: (1) The comprehensive sensitivity of the model parameters is determined by the local analysis method as Srb-0Ks-C, the parameters Sr, Ks, b and {0} are sensitive parameters, and C and K are not sensitive parameters. The comprehensive sensitivity of the model parameters is determined by the global analysis method as the KsbSr-0-IGC, the parameters Sr, Ks and b are sensitive parameters, and the parameter {0} is the sensitive parameter, and the parameter C and the parameter are not sensitive parameters. The results show that the sensitivity and size of the model parameters are different from those of the different research methods. However, for the parameter sensitivity classification, only the sensitivity level of the other parameters is affected by the analysis method, and the other parameter sensitivity grades have good stability. (2) The correlation between the parameters and the objective function is analyzed by the local analysis method and the global analysis method, and the correlation between the sensitivity parameters and the target function Wi and Qmi is clear in different levels of flood and different river basins. The performance is that the parameters' 0, b 'are positively related to Wi and Qmi, and the parameters Sr, Ks are negatively correlated with Wi and Qmi. However, the parameters are not related to all target functions, and when the target function becomes IVF, RE, RSS, PE, the correlation is not clear. Therefore, there is a need to treat different target functions in the actual application, and the regulation of the parameters needs to be treated differently, and it is not all rules to follow. In this paper, the fuzzy ISOD ATA iterative model is used to cluster the historical flood. Since the flood peak flow and the flood volume of the field flood process are the main targets of the flood forecast, the flood peak flow and the total flood volume of the selected historical flood are cluster analysis. The historical flood is divided into three types of flood, medium flood and small flood according to the order of magnitude. Because the flood phenomenon is complicated and changeable, it is difficult to control, and the law of runoff generation is different in different types of flood. In order to reduce the error of forecasting the flood of the whole river basin by a group of hydrological forecasting model parameters, this paper establishes the idea of the classification rate of the parameter of the hydrological forecast model. so as to find the law of the same type of flood runoff and confluence. The classification rate of the model of the hydrological forecast model is as follows: (1) The classification model of the BP neural network is established in this paper, and the type of the basin flood can be accurately determined, and the accuracy of the model is 100% in the sample prediction. (2) The method of the watershed flood classification and forecast in this paper is to increase the qualified rate of the flood forecast from 73% to 82%, and the relative error of the flood volume from 18. 1% to 11. 3%. The qualification rate of the flood peak is also increased from 73% to 82%. The relative error of the flood peak was reduced from 16. 4% to 14. 6%. The whole forecast precision of the study basin is improved, and a reliable basis for studying the real-time dispatching of the river basin is provided. In this paper, the sensitivity classification of the model parameters is only carried out by the traditional perturbation analysis method, and the sensitivity coefficient of the model parameters is not calculated quantitatively, and the comprehensive sensitivity coefficient of the model is analyzed by the weight of the objective function. The sensitivity of the parameters is analyzed in an objective and comprehensive way, and the result is more perfect and reliable. It is of far-reaching significance to the deep understanding of the production flow mechanism of the double supermodel, the process of reducing the model rate and the improvement of the model precision, etc. The BP neural network classification model established in this paper can accurately judge the magnitude of the flood level of the river basin, and is reliable for the classification of the flood in the basin. In addition, the classification of the flood and the result of the identification are affected by the selection of the characteristics of the flood classification.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TV122
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 董揚(yáng)帆;敏感性分析在船舶估價中的應(yīng)用[J];武漢造船;2001年01期
2 章光;朱維申;;參數(shù)敏感性分析與試驗(yàn)方案優(yōu)化[J];巖土力學(xué);1993年01期
3 李欣章,夏侯雪嬌;利潤敏感性分析[J];青島建筑工程學(xué)院學(xué)報;1997年02期
4 李貞,何f ,鄔俏鈞,閆榮;場地開發(fā)的景觀與生態(tài)敏感性分析——以深圳梧桐山南坡廢棄石場為例[J];熱帶地理;2001年04期
5 何永恒;李進(jìn);;項(xiàng)目的敏感性分析[J];交通科技與經(jīng)濟(jì);2012年04期
6 楊家新,public.wh.hb.cn,盧少平;敏感性分析計(jì)算方法初探[J];深圳大學(xué)學(xué)報;2000年01期
7 張曦;;偏微分在項(xiàng)目經(jīng)濟(jì)評價敏感性分析中的應(yīng)用[J];福建建筑;2007年06期
8 李紅燕,遠(yuǎn)巧珍;非線性評估中權(quán)重的敏感性分析[J];裝甲兵工程學(xué)院學(xué)報;2005年01期
9 黃霞;談鵬燕;;敏感性分析在滑坡力學(xué)參數(shù)選取中的應(yīng)用[J];重慶交通大學(xué)學(xué)報(自然科學(xué)版);2011年S1期
10 劉國新;;隨機(jī)敏感性分析探討[J];武漢工學(xué)院學(xué)報;1995年04期
相關(guān)會議論文 前10條
1 李靜;胡志東;田彬;徐海茹;李金;周斌;岳娜;楊華;張志勇;;臨床分離念珠菌的分布及敏感性分析[A];中華醫(yī)學(xué)會第七次全國檢驗(yàn)醫(yī)學(xué)學(xué)術(shù)會議資料匯編[C];2008年
2 邢磊;殷志祥;;無站臺柱雨棚結(jié)構(gòu)的敏感性分析與安全性評價[A];城市地下空間綜合開發(fā)技術(shù)交流會論文集[C];2013年
3 吳玲;曾宇峰;;敏感性分析中求不確定性因素臨界點(diǎn)的一般方法[A];中國運(yùn)籌學(xué)會第六屆學(xué)術(shù)交流會論文集(下卷)[C];2000年
4 許正權(quán);王華清;張中強(qiáng);;復(fù)雜高危系統(tǒng)的失效機(jī)制及結(jié)構(gòu)敏感性調(diào)控[A];和諧發(fā)展與系統(tǒng)工程——中國系統(tǒng)工程學(xué)會第十五屆年會論文集[C];2008年
5 周國富;楊宗周;;巖溶山區(qū)建設(shè)用地占用耕地的敏感性分析[A];中國土地資源戰(zhàn)略與區(qū)域協(xié)調(diào)發(fā)展研究[C];2006年
6 李冬;劉曉晶;楊燕華;;RELAP5程序再淹沒現(xiàn)象物理模型的敏感性分析[A];中國核學(xué)會核能動力分會2013年學(xué)術(shù)研討會論文集[C];2013年
7 楊賢國;陳常銘;;稻田生物群落能流型及敏感性分析[A];青年生態(tài)學(xué)者論叢(二)昆蟲生態(tài)學(xué)研究[C];1991年
8 譚曉洪;應(yīng)康璽;沈華;;設(shè)備運(yùn)行保障系數(shù)在設(shè)備管理應(yīng)用的研究[A];上海空港(第13輯)[C];2011年
9 張艷梅;江志紅;王冀;韓艷鳳;;貴州極端降水隨平均降水變化的敏感性分析[A];中國氣象學(xué)會2006年年會“氣候變化及其機(jī)理和模擬”分會場論文集[C];2006年
10 莊艷美;尹海偉;孔繁花;孫振如;周艷妮;;基于GIS和RS的湖北省生態(tài)敏感性分析[A];第十七屆中國遙感大會摘要集[C];2010年
相關(guān)重要報紙文章 前2條
1 本報記者 應(yīng)尤佳;油價回漲 航空公司套保浮虧大幅縮小[N];上海證券報;2009年
2 張霓 陳錦新;確定研究角度 界定成本范圍[N];醫(yī)藥經(jīng)濟(jì)報;2001年
相關(guān)博士學(xué)位論文 前4條
1 薛亞婷;基于雷達(dá)干涉測量技術(shù)的不同環(huán)境影響因子下蘭州市區(qū)斜坡災(zāi)害識別及敏感性分析研究[D];蘭州大學(xué);2015年
2 韓飛;基于可交易路票策略的隨機(jī)用戶均衡模型及系統(tǒng)優(yōu)化[D];東南大學(xué);2016年
3 李成凱;感應(yīng)熔覆熔池流動與敏感性參數(shù)控制工藝研究[D];中國石油大學(xué)(華東);2014年
4 歐陽帥;祁連山排露溝水文動態(tài)HBV模型模擬參數(shù)檢驗(yàn)及敏感性分析[D];北京林業(yè)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 何沁波;龍景湖葉綠素a濃度預(yù)測模型敏感性分析[D];重慶大學(xué);2015年
2 郭浩;基于EPIC模型的區(qū)域水稻作物參數(shù)敏感性分析[D];浙江師范大學(xué);2015年
3 張琳琳;汛后落水條件下河岸崩塌的機(jī)理分析[D];西北農(nóng)林科技大學(xué);2015年
4 李耀;敏感性分析概率發(fā)生模型的改進(jìn)[D];湘潭大學(xué);2015年
5 孫鑒鋒;北京市適應(yīng)氣候變化信息建模研究[D];北京林業(yè)大學(xué);2016年
6 劉源;破冰船的冰阻力估算方法研究[D];華中科技大學(xué);2014年
7 陳戈;尾礦庫地下水重金屬Cu遷移數(shù)值模型的敏感性分析[D];西南交通大學(xué);2016年
8 于詩歌;水力機(jī)組廣義哈密頓系統(tǒng)結(jié)構(gòu)矩陣元素敏感性分析[D];昆明理工大學(xué);2016年
9 張佳;基于溫度示蹤的潛流交換動態(tài)變化研究[D];長安大學(xué);2016年
10 徐東;代理柴油重整實(shí)驗(yàn)及動力學(xué)模型研究[D];合肥工業(yè)大學(xué);2016年
,本文編號:2318907
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2318907.html