EMD及其改進算法在水工結(jié)構(gòu)振動信號處理中的應(yīng)用
[Abstract]:The vibration signals of hydraulic structures are easily disturbed by high frequency white noise and low frequency water flow noise in the process of conveying and obtaining the vibration signals of hydraulic structures, which usually appear as low signal-to-noise ratio (SNR) and non-stationary random signals. The vibration characteristic information of the structure is completely submerged in the strong noise, so it is difficult to identify the modal information accurately, thus affecting the accuracy of judging the health condition of the structure and the evaluation of the vibration hazard. Therefore, it is necessary to adopt effective signal analysis method to reduce the noise of the measured data in order to obtain the advantage characteristic information of the structural vibration signal. Aiming at the practical problem that the vibration signal of hydraulic structure is not stationary and characteristic information is submerged by strong noise, this paper takes the characteristic of EMD algorithm and its continuous development and perfection as the clue. This paper probes into the application of EMD algorithm in different stages in the vibration signal processing of hydraulic structures, studies its characteristics and advantages in the signal processing of hydraulic structures, in order to obtain a better method suitable for the signal processing of hydraulic structures. The effective information extraction of the working characteristics of the discharge structure under the strong noise background is realized, which provides the help for the next health diagnosis of the structure. The main work and conclusions obtained in this paper are as follows: 1. In order to explore the application of EMD algorithm in vibration signal processing of hydraulic structures, the characteristics of vibration signals of hydraulic structures are discussed. A new method for noise reduction of hydraulic structure vibration signal using wavelet threshold and EMD algorithm is introduced. The simulation results show that the wavelet threshold combined with EMD filtering is a relatively superior denoising method. The result of practical example of Laxiwa arch dam project shows that the method can effectively accomplish the task of noise reduction and accurately obtain the vibration information and dominant frequency of the dam body. In this paper, the advantages of orthogonal empirical mode decomposition (EMD) are brought into full play. A method based on singular value decomposition (SVD) and improved EMD is introduced to extract the characteristic information of vibration signals of hydraulic structures. In this method, the high frequency noise in the vibration signal is filtered by SVD, and the low frequency water flow noise is filtered by orthogonal EMD to realize the secondary filtering of the signal. Finally, the working vibration characteristic information of hydraulic structure is obtained. The result of simulation signal calculation shows that the method is correct. Combining with the measured data of discharge vibration of dam section 5 of the three Gorges Dam, the method is used to extract the characteristic information of the dam body, and the result is compared with the result of ERA identification. The advantages of this method in the vibration information analysis of hydraulic structures are illustrated. The method has good noise reduction ability and engineering practicability. It can provide help for on-line monitoring and safe operation of hydraulic structures. 3. The CEEMDAN algorithm and the working principle of permutation entropy are introduced in detail. Based on CEEMDAN and permutation entropy, the method of extracting the characteristic information of hydraulic structure is put forward. By constructing the simulation data and comparing the noise reduction results of CEEMDAN algorithm, SVD algorithm and CEEMDAN-PE-SVD algorithm, the results show that the CEEMDAN-PE-SVD method can effectively filter the interference components in the signal, restore the dominant characteristic frequency of the signal, and have a high extraction accuracy. It belongs to better signal denoising method. The method is applied to the discharge project of the three Gorges Gravity Dam. It shows that the method can extract the working characteristic information of the structure accurately, has strong anti-noise, strong practicability, and has excellent application prospect. 4, aiming at the characteristics of the vibration signal of hydraulic structure, Based on the continuous improvement and development of EMD algorithm, the characteristics of EMD algorithm in different stages and its application in hydraulic structure signal processing are studied. The results show that the empirical mode decomposition can be well applied to the vibration signal processing of hydraulic structures and can provide a new idea for solving the vibration signal processing of hydraulic structures.
【學位授予單位】:華北水利水電大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TV312
【參考文獻】
相關(guān)期刊論文 前10條
1 張建偉;暴振磊;江琦;王濤;劉軒然;;基于SVD與改進EMD聯(lián)合的泄流結(jié)構(gòu)工作特性信息提取[J];應(yīng)用基礎(chǔ)與工程科學學報;2016年04期
2 張建偉;暴振磊;江琦;;小波—ICA聯(lián)合技術(shù)在水工結(jié)構(gòu)應(yīng)變損傷識別中的應(yīng)用[J];振動與沖擊;2016年11期
3 徐飛鴻;朱檢;張婷婷;;基于曲率模態(tài)曲線的結(jié)構(gòu)損傷識別方法[J];世界地震工程;2015年04期
4 張建偉;江琦;趙瑜;朱良歡;郭佳;;一種適用于泄流結(jié)構(gòu)振動分析的信號降噪方法[J];振動與沖擊;2015年20期
5 張建偉;暴振磊;趙瑜;江琦;曹克磊;;基于小波奇異性與突變理論的地下廠房圍巖穩(wěn)定性評價[J];水電能源科學;2015年09期
6 張建偉;朱良歡;江琦;趙瑜;郭佳;;基于HHT的高壩泄流結(jié)構(gòu)工作模態(tài)參數(shù)辨識[J];振動.測試與診斷;2015年04期
7 李軍;李青;;基于CEEMDAN-排列熵和泄漏積分ESN的中期電力負荷預(yù)測研究[J];電機與控制學報;2015年08期
8 單德山;李喬;;橋梁結(jié)構(gòu)模態(tài)參數(shù)的時頻域識別[J];橋梁建設(shè);2015年02期
9 李琳;張永祥;劉樹勇;;改進EMD-小波分析的轉(zhuǎn)子振動信號去噪方法[J];噪聲與振動控制;2015年02期
10 賈瑞生;趙同彬;孫紅梅;閆相宏;;基于經(jīng)驗?zāi)B(tài)分解及獨立成分分析的微震信號降噪方法[J];地球物理學報;2015年03期
相關(guān)博士學位論文 前6條
1 何龍軍;水工結(jié)構(gòu)損傷整體精細識別理論方法研究[D];天津大學;2013年
2 李帥;工程結(jié)構(gòu)模態(tài)參數(shù)辨識與損傷識別方法研究[D];重慶大學;2013年
3 劉石;雙曲拱壩混凝土本構(gòu)關(guān)系和損傷識別研究[D];吉林大學;2013年
4 陳為真;大型結(jié)構(gòu)振動信號處理與模態(tài)參數(shù)識別研究[D];華中科技大學;2010年
5 李松輝;基于機器學習和模態(tài)參數(shù)識別理論的水工結(jié)構(gòu)損傷診斷方法研究[D];天津大學;2008年
6 尹濤;基于動力特性的水工鋼結(jié)構(gòu)損傷識別理論與試驗研究[D];華中科技大學;2007年
相關(guān)碩士學位論文 前4條
1 馬永法;水工混凝土結(jié)構(gòu)裂縫成因分析及其危害性評價[D];揚州大學;2013年
2 段峰虎;基于信息融合技術(shù)的水工結(jié)構(gòu)損傷診斷研究[D];南昌大學;2011年
3 李達文;基于HHT和SSI的環(huán)境激勵下土木工程結(jié)構(gòu)模態(tài)參數(shù)識別方法研究[D];蘭州理工大學;2008年
4 李彩霞;數(shù)字濾波器的設(shè)計技術(shù)[D];哈爾濱工程大學;2007年
,本文編號:2271951
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2271951.html