混合門限回歸模型在河道水位預報中的應用
發(fā)布時間:2018-09-17 13:13
【摘要】:針對松花江干流汛期洪水的特點以及松花江流域防洪減災的需求,采用多元門限回歸模型建立了松花江干流肇源、三家子、澇洲、木蘭、富錦5個水位站的水位預報模型;在多元門限回歸模型的基礎上進行改進,得到混合門限回歸模型,并以此建立松花江干流5個站的水位預報模型。兩種模型的預報因子均通過AIC準則和DW檢驗法篩選確定,并用最小二乘法估算模型的參數(shù)。選取各水位站2008—2012年汛期的水位資料分別率定相應的水位預報模型,選取2013年汛期的水位資料對各個率定的模型進行驗證。率定和驗證的結(jié)果表明:多元門限回歸模型的預報精度偏低,而混合門限回歸模型的預報精度高,且有一定的通用性,適用于水位預報。
[Abstract]:In view of the characteristics of flood in flood season of Songhua River and the demand of flood control and disaster reduction in Songhua River basin, the water level forecast model of 5 water level stations of Songhua River mainstream, Sanjiazi, waterlogging Island, Mulan and Fujin is established by using multivariate threshold regression model. Based on the multivariate threshold regression model, the mixed threshold regression model is obtained, and the water level prediction model of 5 stations in Songhua River is established. The prediction factors of the two models are determined by AIC criterion and DW test, and the parameters of the model are estimated by the least square method. The corresponding water level prediction models are selected from the water level data of the flood season from 2008 to 2012, and the water level data of the 2013 flood season are selected to verify the models. The results of rate determination and verification show that the prediction accuracy of multivariate threshold regression model is low, while that of mixed threshold regression model is high and universal, so it is suitable for water level prediction.
【作者單位】: 河海大學水文水資源與水利工程科學國家重點實驗室;黑龍江省水文局;
【基金】:國家重點研發(fā)計劃項目(2016YFC0402704) 水文水資源與水利工程科學國家重點實驗室專項經(jīng)費項目(1069-514031112)
【分類號】:P338
本文編號:2246027
[Abstract]:In view of the characteristics of flood in flood season of Songhua River and the demand of flood control and disaster reduction in Songhua River basin, the water level forecast model of 5 water level stations of Songhua River mainstream, Sanjiazi, waterlogging Island, Mulan and Fujin is established by using multivariate threshold regression model. Based on the multivariate threshold regression model, the mixed threshold regression model is obtained, and the water level prediction model of 5 stations in Songhua River is established. The prediction factors of the two models are determined by AIC criterion and DW test, and the parameters of the model are estimated by the least square method. The corresponding water level prediction models are selected from the water level data of the flood season from 2008 to 2012, and the water level data of the 2013 flood season are selected to verify the models. The results of rate determination and verification show that the prediction accuracy of multivariate threshold regression model is low, while that of mixed threshold regression model is high and universal, so it is suitable for water level prediction.
【作者單位】: 河海大學水文水資源與水利工程科學國家重點實驗室;黑龍江省水文局;
【基金】:國家重點研發(fā)計劃項目(2016YFC0402704) 水文水資源與水利工程科學國家重點實驗室專項經(jīng)費項目(1069-514031112)
【分類號】:P338
【相似文獻】
相關期刊論文 前4條
1 程銀才;范世香;;基于門限回歸的穩(wěn)定水位流量關系曲線定線方法[J];水文;2013年04期
2 金菊良,魏一鳴,丁晶;投影尋蹤門限回歸模型在年徑流預測中的應用[J];地理科學;2002年02期
3 馬志瑾;;多元門限回歸短期徑流預報模型在黃河上游的應用[J];甘肅水利水電技術;2012年06期
4 ;[J];;年期
,本文編號:2246027
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2246027.html
最近更新
教材專著