可調(diào)導(dǎo)葉對(duì)低揚(yáng)程泵裝置水力性能影響的數(shù)值計(jì)算研究
[Abstract]:Low-lift pumping stations play an important role in water transfer, water environment improvement and urban flood control in China. Pump efficiency depends on the efficiency of each component and the smoothness of connection. The guide vane is connected to the upper impeller in the pump device and the outlet passage to the bottom. The original intention of setting the guide vane at the outlet of the pump impeller is to convert the rotational kinetic energy of the water flow into the pressure energy, so as to reduce the hydraulic loss. At present, the guide vane is unadjustable, and the inlet angle of guide vane is determined according to the flow velocity triangle at the outlet of the impeller under the design condition. The design goal of the outlet placement angle of the guide vane should be to obtain the optimal ring quantity of the outlet vane to make the hydraulic performance of the outlet passage optimal, and the optimal ring quantity is related to the flow rate. When the working condition is changed, the flow velocity triangle at the outlet of the impeller and the optimal annular volume corresponding to the outlet passage will change. At this time, the inlet and outlet angle of the guide vane cannot be adjusted, the hydraulic loss will increase, and the efficiency of the pump device will decrease. This paper presents a method to improve the efficiency of pump device by adjusting the inlet and outlet angle of guide vane. In view of the research on the influence of inlet and outlet angle of guide vane on hydraulic performance of pump unit, the main research work of this paper is as follows: 1. The research results of rear guide vane of axial flow pump at home and abroad are summarized and analyzed, and the research on guide vane is made clear. The purpose, significance and main research contents of the effect of outlet placement angle on hydraulic performance of pump unit are summarized and analyzed, and the development status of numerical simulation is summarized and analyzed. The research method and feasibility of this paper are defined. 2. The solid modeling and mesh generation of the axial flow pump device are carried out, and the model simulation of many different grid numbers of the axial flow pump device is carried out, and the mesh independence analysis is carried out. The number of numerical analysis meshes is chosen to ensure that it has no effect on the performance calculation results of axial pump device. On this basis, the different schemes are calculated by using CFD software, and the simulation results are analyzed and studied. Finally, the method of integral adjustment of the guide vane is put forward, and the simulation calculation is carried out at different working conditions. When the guide vane is fixed, the pump device efficiency corresponding to the flow rate of 0.8QdN 0.9QdN 1.0QdU 1.1Qd and 1.2Qd is 72.060.30 / 75.33and 74.9665.59% and 38.84 respectively. When the guide vane is adjusted as a whole, the optimum efficiency under different flow rates is 74.022.81g / 74.96 / 66.20% and 43.2445%, respectively. The integral adjustment of guide vane is helpful to improve the efficiency of pump unit. Taking 0.8Qd and 1.2Qd as examples, the influence of outlet angle of guide vane on the hydraulic performance of outlet passage is analyzed respectively with small flow rate and large flow rate, and the conception of partial regulating guide vane is put forward. It is concluded that when the flow rate is small, different regulation schemes have great influence on hydraulic performance of pump unit. For the optimal pump unit efficiency, the integral adjustment increases 1.96% compared with the fixed guide vane, and the partial adjustment increases 1.16% compared with the integral guide vane, and when the flow rate is large, the integral regulation has a greater influence on the hydraulic performance of the pump device. Compared with the fixed guide vane, the efficiency of the pump device is increased by 4.4 steps, the effect of the partial adjustment is less than that of the whole regulation, and the efficiency of the pump device is only increased by 0.18.
【學(xué)位授予單位】:揚(yáng)州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TV136.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王林鎖,陳松山,葛強(qiáng),陳玉明;泵及泵裝置效率預(yù)測(cè)方法研究[J];揚(yáng)州大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年02期
2 張?jiān)A;;提高排灌用泵裝置效率的主要措施[J];北京節(jié)能;1993年06期
3 王林鎖,陳松山,陸偉剛,陳玉明,葛強(qiáng);新型雙向平蝸殼流通泵裝置特性試驗(yàn)研究[J];揚(yáng)州大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年04期
4 陳松山;嚴(yán)登豐;葛強(qiáng);周正富;羅惕乾;;泵及泵裝置效率換算方法[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2006年11期
5 潘光星;何萍;陳松山;何鐘寧;周正富;;泵段與泵裝置能量特性曲線關(guān)系探討[J];揚(yáng)州大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年04期
6 馮耀忠;;改進(jìn)的電泵裝置[J];石油機(jī)械;2008年04期
7 陳松山;;泵裝置變速經(jīng)濟(jì)運(yùn)行理論探討[J];排灌機(jī)械;1993年02期
8 王林鎖,陸偉剛;泵裝置動(dòng)力特性隨轉(zhuǎn)速變化關(guān)系的研究[J];排灌機(jī)械;1998年02期
9 陳松山,王林鎖,陸偉剛,葛強(qiáng);大型軸流泵站雙向流道設(shè)計(jì)及泵裝置特性試驗(yàn)[J];江蘇理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年03期
10 湯方平,李大亮,陳運(yùn)杰;粒子速度場(chǎng)儀在泵裝置內(nèi)流測(cè)量研究中的應(yīng)用[J];中國(guó)農(nóng)村水利水電;2005年04期
相關(guān)會(huì)議論文 前3條
1 陳松山;葛強(qiáng);周正富;嚴(yán)登豐;;泵裝置模型試驗(yàn)?zāi)M方法分析[A];2009全國(guó)大型泵站更新改造研討暨新技術(shù)、新產(chǎn)品交流大會(huì)論文集[C];2009年
2 李彥軍;嚴(yán)登豐;袁壽其;;泵及泵裝置效率換算方法研究[A];農(nóng)業(yè)機(jī)械化與新農(nóng)村建設(shè)——中國(guó)農(nóng)業(yè)機(jī)械學(xué)會(huì)2006年學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2006年
3 陳松山;葛強(qiáng);嚴(yán)登豐;周正富;屈磊飛;;大型泵站豎井進(jìn)水流道數(shù)值模擬與泵裝置特性試驗(yàn)研究[A];2009全國(guó)大型泵站更新改造研討暨新技術(shù)、新產(chǎn)品交流大會(huì)論文集[C];2009年
相關(guān)碩士學(xué)位論文 前8條
1 白炳國(guó);江都泵站泵裝置魚類通過性計(jì)算與分析[D];揚(yáng)州大學(xué);2016年
2 徐磊;平面S形軸伸泵裝置水力特性[D];揚(yáng)州大學(xué);2017年
3 蔣麗君;泵裝置優(yōu)化設(shè)計(jì)研究[D];揚(yáng)州大學(xué);2004年
4 姜楠;雙向?qū)ΨQ葉輪豎井貫流式泵裝置內(nèi)流動(dòng)數(shù)值模擬[D];揚(yáng)州大學(xué);2010年
5 陳阿萍;臥式前軸伸泵裝置的數(shù)值模擬及模型試驗(yàn)研究[D];揚(yáng)州大學(xué);2007年
6 徐磊;斜式軸伸泵裝置水力特性及優(yōu)化設(shè)計(jì)研究[D];揚(yáng)州大學(xué);2009年
7 甄峰;烏江泵站水力模型選擇及泵裝置模型試驗(yàn)研究[D];揚(yáng)州大學(xué);2013年
8 周慶連;立式潛水泵裝置內(nèi)部流動(dòng)和性能預(yù)測(cè)[D];揚(yáng)州大學(xué);2014年
,本文編號(hào):2213679
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2213679.html