天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 水利工程論文 >

可調(diào)導(dǎo)葉對(duì)低揚(yáng)程泵裝置水力性能影響的數(shù)值計(jì)算研究

發(fā)布時(shí)間:2018-08-30 16:49
【摘要】:低揚(yáng)程泵站在我國(guó)跨流域調(diào)水、水環(huán)境改善、城市防洪等方面發(fā)揮著重要作用。泵裝置效率取決于其各組成部分的效率及相互之間連接的順暢度。導(dǎo)葉在泵裝置中上承葉輪,下接出水流道。水泵葉輪出口設(shè)置導(dǎo)葉的初衷是將水流的旋轉(zhuǎn)動(dòng)能轉(zhuǎn)化為壓能,從而減小水力損失。當(dāng)前導(dǎo)葉都是不可調(diào)節(jié)的,導(dǎo)葉進(jìn)口安放角是按設(shè)計(jì)工況下葉輪的出口水流速度三角形確定的。導(dǎo)葉的出口安放角的設(shè)計(jì)目標(biāo)應(yīng)是使得導(dǎo)葉出口獲得使出水流道水力性能最優(yōu)的最優(yōu)環(huán)量,最優(yōu)環(huán)量與流量有關(guān)。當(dāng)工況改變后,葉輪的出口水流速度三角形和出水流道所對(duì)應(yīng)的最優(yōu)環(huán)量都會(huì)發(fā)生改變,此時(shí)導(dǎo)葉的進(jìn)出口安放角不可調(diào)節(jié),水力損失將會(huì)增大,泵裝置效率下降。本文提出調(diào)節(jié)導(dǎo)葉進(jìn)出口安放角以提高泵裝置效率的方法。針對(duì)導(dǎo)葉進(jìn)出口安放角對(duì)泵裝置水力性能的影響的研究,本文的研究工作主要有以下內(nèi)容:1、對(duì)國(guó)內(nèi)外的軸流泵后置導(dǎo)葉的研究成果進(jìn)行了總結(jié)分析,明確了研究導(dǎo)葉進(jìn)、出口安放角對(duì)泵裝置水力性能影響的目的、意義和主要研究?jī)?nèi)容;同時(shí)總結(jié)分析了數(shù)值模擬的發(fā)展現(xiàn)狀,明確了本文的研究方法及其可行性。2、對(duì)軸流泵泵裝置進(jìn)行實(shí)體建模以及網(wǎng)格剖分,并對(duì)多個(gè)不同網(wǎng)格數(shù)的軸流泵泵裝置模型模擬計(jì)算,進(jìn)行網(wǎng)格的無關(guān)性分析,選擇數(shù)值分析網(wǎng)格數(shù)量,以保證其對(duì)軸流泵泵裝置性能計(jì)算結(jié)果無影響。在此基礎(chǔ)上,運(yùn)用CFD計(jì)算軟件對(duì)不同方案進(jìn)行計(jì)算,并對(duì)模擬結(jié)果加以分析與研究。3、提出導(dǎo)葉葉片整體調(diào)節(jié)的方法,在不同工況點(diǎn)下進(jìn)行模擬計(jì)算。當(dāng)導(dǎo)葉固定不動(dòng)時(shí),流量為0.8Qd、0.9Qd、1.0Qd、1.1Qd及1.2Qd時(shí)所對(duì)應(yīng)的泵裝置效率分別為72.06%、75.33%、74.96%、65.59%及38.84%,導(dǎo)葉整體調(diào)節(jié)時(shí),不同流量下所能達(dá)到的最優(yōu)效率為74.02%、75.81%、74.96%、66.20%及43.24%,均有所提升;可見,導(dǎo)葉整體調(diào)節(jié)對(duì)提高泵裝置效率有所幫助。4、以0.8Qd與1.2Qd為例,分別分析小流量與大流量時(shí)導(dǎo)葉出口安放角對(duì)出水流道水力性能的影響,提出分部調(diào)節(jié)導(dǎo)葉的構(gòu)想,并對(duì)其進(jìn)行計(jì)算,得出結(jié)論:小流量時(shí),不同調(diào)節(jié)方案對(duì)泵裝置水力性能的影響較大。對(duì)于最優(yōu)泵裝置效率,整體調(diào)節(jié)時(shí)比固定導(dǎo)葉提高了 1.96%,分部調(diào)節(jié)又比整體導(dǎo)葉提高了 1.16%;大流量時(shí),整體調(diào)節(jié)對(duì)泵裝置水力性能的提升影響較大,泵裝置效率比固定導(dǎo)葉時(shí)提升了 4.4%,分部調(diào)節(jié)與整體調(diào)節(jié)相比影響較小,泵裝置效率僅提高了 0.18%。
[Abstract]:Low-lift pumping stations play an important role in water transfer, water environment improvement and urban flood control in China. Pump efficiency depends on the efficiency of each component and the smoothness of connection. The guide vane is connected to the upper impeller in the pump device and the outlet passage to the bottom. The original intention of setting the guide vane at the outlet of the pump impeller is to convert the rotational kinetic energy of the water flow into the pressure energy, so as to reduce the hydraulic loss. At present, the guide vane is unadjustable, and the inlet angle of guide vane is determined according to the flow velocity triangle at the outlet of the impeller under the design condition. The design goal of the outlet placement angle of the guide vane should be to obtain the optimal ring quantity of the outlet vane to make the hydraulic performance of the outlet passage optimal, and the optimal ring quantity is related to the flow rate. When the working condition is changed, the flow velocity triangle at the outlet of the impeller and the optimal annular volume corresponding to the outlet passage will change. At this time, the inlet and outlet angle of the guide vane cannot be adjusted, the hydraulic loss will increase, and the efficiency of the pump device will decrease. This paper presents a method to improve the efficiency of pump device by adjusting the inlet and outlet angle of guide vane. In view of the research on the influence of inlet and outlet angle of guide vane on hydraulic performance of pump unit, the main research work of this paper is as follows: 1. The research results of rear guide vane of axial flow pump at home and abroad are summarized and analyzed, and the research on guide vane is made clear. The purpose, significance and main research contents of the effect of outlet placement angle on hydraulic performance of pump unit are summarized and analyzed, and the development status of numerical simulation is summarized and analyzed. The research method and feasibility of this paper are defined. 2. The solid modeling and mesh generation of the axial flow pump device are carried out, and the model simulation of many different grid numbers of the axial flow pump device is carried out, and the mesh independence analysis is carried out. The number of numerical analysis meshes is chosen to ensure that it has no effect on the performance calculation results of axial pump device. On this basis, the different schemes are calculated by using CFD software, and the simulation results are analyzed and studied. Finally, the method of integral adjustment of the guide vane is put forward, and the simulation calculation is carried out at different working conditions. When the guide vane is fixed, the pump device efficiency corresponding to the flow rate of 0.8QdN 0.9QdN 1.0QdU 1.1Qd and 1.2Qd is 72.060.30 / 75.33and 74.9665.59% and 38.84 respectively. When the guide vane is adjusted as a whole, the optimum efficiency under different flow rates is 74.022.81g / 74.96 / 66.20% and 43.2445%, respectively. The integral adjustment of guide vane is helpful to improve the efficiency of pump unit. Taking 0.8Qd and 1.2Qd as examples, the influence of outlet angle of guide vane on the hydraulic performance of outlet passage is analyzed respectively with small flow rate and large flow rate, and the conception of partial regulating guide vane is put forward. It is concluded that when the flow rate is small, different regulation schemes have great influence on hydraulic performance of pump unit. For the optimal pump unit efficiency, the integral adjustment increases 1.96% compared with the fixed guide vane, and the partial adjustment increases 1.16% compared with the integral guide vane, and when the flow rate is large, the integral regulation has a greater influence on the hydraulic performance of the pump device. Compared with the fixed guide vane, the efficiency of the pump device is increased by 4.4 steps, the effect of the partial adjustment is less than that of the whole regulation, and the efficiency of the pump device is only increased by 0.18.
【學(xué)位授予單位】:揚(yáng)州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TV136.2

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王林鎖,陳松山,葛強(qiáng),陳玉明;泵及泵裝置效率預(yù)測(cè)方法研究[J];揚(yáng)州大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年02期

2 張?jiān)A;;提高排灌用泵裝置效率的主要措施[J];北京節(jié)能;1993年06期

3 王林鎖,陳松山,陸偉剛,陳玉明,葛強(qiáng);新型雙向平蝸殼流通泵裝置特性試驗(yàn)研究[J];揚(yáng)州大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年04期

4 陳松山;嚴(yán)登豐;葛強(qiáng);周正富;羅惕乾;;泵及泵裝置效率換算方法[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2006年11期

5 潘光星;何萍;陳松山;何鐘寧;周正富;;泵段與泵裝置能量特性曲線關(guān)系探討[J];揚(yáng)州大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年04期

6 馮耀忠;;改進(jìn)的電泵裝置[J];石油機(jī)械;2008年04期

7 陳松山;;泵裝置變速經(jīng)濟(jì)運(yùn)行理論探討[J];排灌機(jī)械;1993年02期

8 王林鎖,陸偉剛;泵裝置動(dòng)力特性隨轉(zhuǎn)速變化關(guān)系的研究[J];排灌機(jī)械;1998年02期

9 陳松山,王林鎖,陸偉剛,葛強(qiáng);大型軸流泵站雙向流道設(shè)計(jì)及泵裝置特性試驗(yàn)[J];江蘇理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年03期

10 湯方平,李大亮,陳運(yùn)杰;粒子速度場(chǎng)儀在泵裝置內(nèi)流測(cè)量研究中的應(yīng)用[J];中國(guó)農(nóng)村水利水電;2005年04期

相關(guān)會(huì)議論文 前3條

1 陳松山;葛強(qiáng);周正富;嚴(yán)登豐;;泵裝置模型試驗(yàn)?zāi)M方法分析[A];2009全國(guó)大型泵站更新改造研討暨新技術(shù)、新產(chǎn)品交流大會(huì)論文集[C];2009年

2 李彥軍;嚴(yán)登豐;袁壽其;;泵及泵裝置效率換算方法研究[A];農(nóng)業(yè)機(jī)械化與新農(nóng)村建設(shè)——中國(guó)農(nóng)業(yè)機(jī)械學(xué)會(huì)2006年學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2006年

3 陳松山;葛強(qiáng);嚴(yán)登豐;周正富;屈磊飛;;大型泵站豎井進(jìn)水流道數(shù)值模擬與泵裝置特性試驗(yàn)研究[A];2009全國(guó)大型泵站更新改造研討暨新技術(shù)、新產(chǎn)品交流大會(huì)論文集[C];2009年

相關(guān)碩士學(xué)位論文 前8條

1 白炳國(guó);江都泵站泵裝置魚類通過性計(jì)算與分析[D];揚(yáng)州大學(xué);2016年

2 徐磊;平面S形軸伸泵裝置水力特性[D];揚(yáng)州大學(xué);2017年

3 蔣麗君;泵裝置優(yōu)化設(shè)計(jì)研究[D];揚(yáng)州大學(xué);2004年

4 姜楠;雙向?qū)ΨQ葉輪豎井貫流式泵裝置內(nèi)流動(dòng)數(shù)值模擬[D];揚(yáng)州大學(xué);2010年

5 陳阿萍;臥式前軸伸泵裝置的數(shù)值模擬及模型試驗(yàn)研究[D];揚(yáng)州大學(xué);2007年

6 徐磊;斜式軸伸泵裝置水力特性及優(yōu)化設(shè)計(jì)研究[D];揚(yáng)州大學(xué);2009年

7 甄峰;烏江泵站水力模型選擇及泵裝置模型試驗(yàn)研究[D];揚(yáng)州大學(xué);2013年

8 周慶連;立式潛水泵裝置內(nèi)部流動(dòng)和性能預(yù)測(cè)[D];揚(yáng)州大學(xué);2014年

,

本文編號(hào):2213679

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2213679.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶231fe***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com