堆石料和接觸面彈塑性本構(gòu)模型及其在面板堆石壩中的應(yīng)用研究
[Abstract]:Although the compaction density and deformation modulus of modern CFRD are much higher than those of earlier stage, the deformation of dam body is still the main problem in safety design of CFRD. Guan. In recent years, problems such as compression failure of face slab and void of face slab occurred during filling, impoundment and earthquake of high face rockfill dam. These problems are closely related to deformation of rockfill and contact deformation between face slab and cushion. In recent years, the elastic-plastic finite element analysis of the filling and impoundment process of CFRD has been greatly developed. However, due to the lack of seismic damage data under strong earthquake, the development of dynamic elastic-plastic analysis method for CFRD has been certain. At present, the equivalent linear analysis method widely used in the dynamic analysis of CFRD can better reflect the acceleration response of moderate and low intensity earthquakes, but it can not meet the analysis requirements of the simulation of the whole process of strong nonlinearity and even failure that may occur in the strong earthquake environment of the dam. Deformation is the main cause of extrusion failure and slab void, but the equivalent linear analysis method can not consider the progressive development of plastic deformation under dynamic conditions, and it is difficult to evaluate the effect of rock-fill deformation on slab failure under strong earthquake. In this paper, the effect of large-scale triaxial apparatus on the grain size of dam-building rockfill materials is firstly adopted. A generalized plastic model of state-dependent rockfill material considering particle breakage is proposed. Then a three-dimensional generalized plastic contact surface model is proposed. Finally, an elastoplastic constitutive model based on the interface between rockfill material and face slab and cushion is established. Three-dimensional static and dynamic elastic-plastic finite element analysis method of concrete face rockfill dam is applied to the static and dynamic elastic-plastic finite element analysis of Zipingpu concrete face rockfill dam during filling, impoundment and earthquake. The results show that there is a good hyperbolic relationship between the particle breakage rate and the plastic work under monotonic and cyclic loads, and the effect of void ratio, confining pressure and stress path is less. (2) The relationship between the particle breakage and the critical state is analyzed by using the sand test results in the literature. The critical state of the rockfill materials for Ziping Pavement Dam and the sand and gravel materials for Milan River Dam are studied in order to better reflect the variation of the critical state with particle breakage. The results show that there is a good linear relationship between dilatancy ratio Dp and stress ratio_before peak stress, and the relationship between dilatancy of equal P and_3 paths is basically the same. The stress ratio decreases with the increase of confining pressure. There is a good linear relationship between the phase transformation stress ratio Mf and the state parameter_, and the slope parameter k is less than 0. (4) The dilatancy law of the rockfill and the Altash gravel under Triaxial Cyclic loading is studied. The dilatancy curves on the d 0 and d 0 paths under cyclic loading are approximately linear. The initial loading (monotonic) and initial unloading dilatancy curves are the boundary lines (outer lines) of the dilatancy curves under cyclic loading. The dilatancy curves under cyclic loading are both located inside the boundary lines. The position of dilatancy line under cyclic loading is closely related to the position of unloading reverse bending point. The farther the reverse bending point is from the initial loading dilatancy line, the greater the distance the dilatancy line deviates from the initial unloading dilatancy line after unloading. Consistent. (5) Based on experimental study and generalized plastic model framework, a generalized state-dependent plasticity model for rockfill considering particle breakage is proposed by using boundary surface and critical state theory in collaboration with Professor Liu Huabei. Initial void ratio is taken as the model input parameter, and the model parameters are independent of the initial void ratio. The static and dynamic elastic-plastic finite element numerical simulation of CFRD is carried out by using the model. The influence of gradation change caused by crushing particles on the deformation of CFRD is analyzed. The influence of fragmentation on the gradation change will obviously underestimate the deformation of the dam, which is very unfavorable to the safety evaluation of the dam. This may be one of the main reasons why the settlement deformation of the high dam calculated by the finite element method is smaller than that measured. (6) Based on the contact surface model under plane strain condition, the boundary surface theory is adopted. A three-dimensional generalized plastic contact surface model is proposed. The model can reflect the deformation characteristics of the contact surface under three-dimensional monotonic and cyclic conditions with different initial void ratios and different normal constraints. The influence of particle breakage under monotonic and cyclic loads and the three-dimensional coupling effect of shear can be considered. Three-dimensional finite element static and dynamic elastic-plastic finite element numerical simulation was carried out for the CFRD under construction. The influence of contact surface model on the deformation and stress of the contact surface between the face slab and the cushion was analyzed. The results show that the generalized plastic contact surface model can better describe the deformation of the contact surface between the face slab and the cushion than the hyperbolic (only static calculation) and the ideal elastic-plastic contact surface model. (7) Based on the generalized plastic model of state-dependent rockfill materials and the three-dimensional generalized plastic contact surface model, the static and dynamic elastic-plastic finite element simulation of Ziping Paved Rockfill Dam is carried out. Based on the feedback analysis of the residual deformation after Wenchuan earthquake, the parameters of the rockfill model are obtained, and the dynamic response and residual deformation law of the dam are analyzed. The slab of Zipingpu CFRD has a large void area after the earthquake, which is closely related to the water level before the earthquake. It is easier for the slab to void above the water level because the normal restraint of the slab is small. Surface elastic-plastic model can reproduce the residual deformation and slab void process of Ziping Paved Rockfill Dam under Wenchuan earthquake.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TV641.43
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 梁軍,劉漢龍,高玉峰;堆石料流變的特性研究與反分析[J];防災(zāi)減災(zāi)工程學(xué)報(bào);2004年01期
2 程展林,丁紅順;堆石料蠕變特性試驗(yàn)研究[J];巖土工程學(xué)報(bào);2004年04期
3 劉萌成,高玉峰,黃曉明;考慮強(qiáng)度非線性的堆石料彈塑性本構(gòu)模型研究[J];巖土工程學(xué)報(bào);2005年03期
4 程展林,丁紅順;論堆石料力學(xué)試驗(yàn)中的不確定性[J];巖土工程學(xué)報(bào);2005年10期
5 肖貢元;;宜興抽水蓄能電站上庫主壩堆石料的特殊研究[J];水利水電科技進(jìn)展;2005年06期
6 田堪良,張慧莉,駱亞生;堆石料的剪切強(qiáng)度與應(yīng)力 應(yīng)變特性[J];巖石力學(xué)與工程學(xué)報(bào);2005年04期
7 喬國鋒;;龍首二級(jí)電站堆石壩面板堆石料試驗(yàn)研究[J];甘肅水利水電技術(shù);2006年02期
8 程展林;丁紅順;;堆石料工程特性試驗(yàn)研究[J];人民長江;2007年07期
9 王?;殷宗澤;;堆石料長期變形的室內(nèi)試驗(yàn)研究[J];水利學(xué)報(bào);2007年08期
10 劉瑩;羅林峰;;堆石料強(qiáng)度及變形研究[J];吉林水利;2008年09期
相關(guān)會(huì)議論文 前10條
1 李體建;;三板溪強(qiáng)風(fēng)化堆石料的工程特性[A];巖土工程學(xué)術(shù)交流會(huì)文集[C];2004年
2 張?chǎng)?李海芳;葛克水;張茵琪;;小浪底水電站堆石料流變特性試驗(yàn)研究[A];水庫大壩建設(shè)與管理中的技術(shù)進(jìn)展——中國大壩協(xié)會(huì)2012學(xué)術(shù)年會(huì)論文集[C];2012年
3 耿麗;吳小波;浦滬軍;黃志強(qiáng);;堆石料強(qiáng)度及變形特性的細(xì)觀模擬與分析[A];第22屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集第Ⅰ冊(cè)[C];2013年
4 楊貴;劉漢龍;陳育民;沈揚(yáng);;堆石料動(dòng)力變形特性的尺寸效應(yīng)研究[A];現(xiàn)代水利水電工程抗震防災(zāi)研究與進(jìn)展[C];2009年
5 齊俊修;;堆石料與基巖大型直剪試驗(yàn)研究[A];土石壩與巖土力學(xué)技術(shù)研討會(huì)論文集[C];2001年
6 楊玉娟;潘家軍;陳云;;堆石料三軸試驗(yàn)中的顆粒破碎研究[A];現(xiàn)代水利水電工程抗震防災(zāi)研究與進(jìn)展(2011年)[C];2011年
7 邵磊;遲世春;賈宇峰;;堆石料三軸試驗(yàn)的細(xì)觀模擬[A];中國力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
8 李海芳;張茵琪;;堆石料蠕變?cè)囼?yàn)中的側(cè)縮現(xiàn)象[A];第十一屆全國土力學(xué)及巖土工程學(xué)術(shù)會(huì)議論文集[C];2011年
9 姜菲;溫彥鋒;李海芳;鄧剛;;堆石料蠕變特性試驗(yàn)研究[A];第十一屆全國土力學(xué)及巖土工程學(xué)術(shù)會(huì)議論文集[C];2011年
10 蔡新;宋小波;明宇;楊杰;傅華;;膠凝堆石料動(dòng)本構(gòu)關(guān)系及動(dòng)模量衰減模型[A];現(xiàn)代水利水電工程抗震防災(zāi)研究與進(jìn)展(2013年)[C];2013年
相關(guān)博士學(xué)位論文 前5條
1 孫國亮;堆石料風(fēng)化過程中的抗剪強(qiáng)度和變形特性研究[D];清華大學(xué);2009年
2 張幸幸;堆石料彈塑性循環(huán)本構(gòu)模型研究及應(yīng)用[D];清華大學(xué);2015年
3 劉京茂;堆石料和接觸面彈塑性本構(gòu)模型及其在面板堆石壩中的應(yīng)用研究[D];大連理工大學(xué);2015年
4 孔德志;堆石料的顆粒破碎應(yīng)變及其數(shù)學(xué)模擬[D];清華大學(xué);2009年
5 岑威鈞;堆石料亞塑性本構(gòu)模型及面板堆石壩數(shù)值分析[D];河海大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 李士杰;基于細(xì)觀接觸理論的堆石料解析本構(gòu)關(guān)系研究[D];大連理工大學(xué);2015年
2 房恩澤;筑壩土石料動(dòng)力特性研究[D];大連理工大學(xué);2015年
3 孫庚;堆石料的蠕變特性試驗(yàn)研究[D];中國水利水電科學(xué)研究院;2016年
4 吳曉翔;中低混凝土面板堆石壩變形對(duì)大壩安全影響的研究[D];浙江大學(xué);2015年
5 王勇;堆石料滲透特性試驗(yàn)研究[D];河海大學(xué);2006年
6 張?chǎng)?堆石料的流變特性實(shí)驗(yàn)及其流變模型的研究[D];中國地質(zhì)大學(xué)(北京);2013年
7 張茵琪;堆石料蠕變模型試驗(yàn)研究[D];中國水利水電科學(xué)研究院;2013年
8 程博;堆石壩壩體堆石料蠕變特性試驗(yàn)研究[D];北京工業(yè)大學(xué);2012年
9 侯新強(qiáng);吉林臺(tái)一級(jí)水電站爆破堆石料的三軸試驗(yàn)研究[D];新疆農(nóng)業(yè)大學(xué);2005年
10 付永春;價(jià)值工程在壩體堆石料開采中的應(yīng)用[D];四川大學(xué);2003年
,本文編號(hào):2184543
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2184543.html