天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 水利工程論文 >

堆石料和接觸面彈塑性本構(gòu)模型及其在面板堆石壩中的應(yīng)用研究

發(fā)布時(shí)間:2018-08-15 14:52
【摘要】:盡管現(xiàn)代面板堆石壩壓實(shí)密度和變形模量較早期有很大提高,但壩體變形仍是面板堆石壩安全設(shè)計(jì)的主要問題。筑壩堆石料的變形特性是影響面板應(yīng)力量值和分布規(guī)律的重要因素。此外,面板應(yīng)力還與面板與墊層間的接觸變形緊密相關(guān)。近年來,高面板堆石壩在填筑、蓄水以及地震過程中出現(xiàn)了面板擠壓破壞和面板脫空等問題,這些問題與堆石體的變形以及面板與墊層間的接觸變形均有著密不可分的關(guān)系。筑壩堆石料本構(gòu)模型以及面板與墊層間接觸面本構(gòu)模型是計(jì)算分析面板堆石壩變形和面板應(yīng)力分布規(guī)律的重要理論基礎(chǔ)。近年來,面板堆石壩填筑和蓄水過程的彈塑性有限元分析已經(jīng)有了較大的發(fā)展。但由于缺乏強(qiáng)震情況下的震害資料,面板堆石壩動(dòng)力彈塑性分析方法的發(fā)展受到了一定的限制。目前,在面板堆石壩動(dòng)力分析中廣泛采用的等效線性分析方法可以較好的反映中、低強(qiáng)度地震的加速度反應(yīng),但不能滿足大壩在強(qiáng)震環(huán)境中可能出現(xiàn)的強(qiáng)非線性乃至破壞全過程模擬的分析要求。強(qiáng)震下面板堆石壩較大的塑性(殘余)變形,是引起面板擠壓破壞和面板脫空等現(xiàn)象的主要原因,但等效線性分析方法不能考慮動(dòng)力條件下塑性變形漸進(jìn)發(fā)展過程,難以合理評(píng)價(jià)強(qiáng)震下堆石體變形對(duì)面板破壞的影響。為此,本文首先采用大型三軸儀對(duì)筑壩堆石料的顆粒破碎、臨界狀態(tài)及剪脹特性進(jìn)行了試驗(yàn)研究,在此基礎(chǔ)上提出了一個(gè)考慮顆粒破碎的狀態(tài)相關(guān)堆石料廣義塑性模型。然后提出了一個(gè)三維廣義塑性接觸面模型。最終建立了一套基于筑壩堆石料和面板與墊層間接觸面彈塑性本構(gòu)模型的面板堆石壩三維靜、動(dòng)彈塑性有限元分析方法,并應(yīng)用于紫坪鋪面板堆石壩填筑、蓄水及地震全過程的靜、動(dòng)彈塑性有限元實(shí)例分析。本文的研究內(nèi)容及主要結(jié)論有:(1)采用大型三軸儀對(duì)紫坪鋪筑壩堆石料進(jìn)行了顆粒破碎試驗(yàn)研究。試驗(yàn)表明:單調(diào)和循環(huán)荷載下堆石料的顆粒破碎率與塑性功之間存在良好的雙曲線關(guān)系,且受孔隙比、圍壓和應(yīng)力路徑的影響較小(2)采用文獻(xiàn)中的砂土試驗(yàn)成果分析了顆粒破碎和臨界狀態(tài)的關(guān)系。結(jié)果表明,將塑性功引入到臨界狀態(tài)可以較好的反映臨界狀態(tài)隨顆粒破碎的變化規(guī)律。對(duì)紫坪鋪筑壩堆石料和米蘭河筑壩砂礫料的臨界狀態(tài)進(jìn)行了研究。試驗(yàn)表明:兩種堆石料均存在臨界狀態(tài),且臨界狀態(tài)受初始孔隙比影響較小。(3)研究了三軸單調(diào)壓縮荷載下紫坪鋪筑壩堆石料和文獻(xiàn)中5種堆石料的剪脹規(guī)律。結(jié)果表明:峰值應(yīng)力前剪脹比Dp和應(yīng)力比η呈較好的線性關(guān)系,等p和σ3路徑的剪脹關(guān)系基本一致。剪脹線斜率受孔隙比和圍壓的影響較小。除1種顆粒破碎較小的堆石料,其他5種堆石料的相位變換應(yīng)力比均隨圍壓的增加而減小。紫坪鋪筑壩堆石料相位變換應(yīng)力比Mf和狀態(tài)參數(shù)ψ之間呈較好的線性關(guān)系,斜率參數(shù)k小于0。(4)研究了三軸循環(huán)荷載下紫坪鋪筑壩堆石料和阿爾塔什砂礫料的剪脹規(guī)律。試驗(yàn)表明:三軸拉伸時(shí)Dp和η呈近似線性關(guān)系,三軸壓縮和拉伸相位變換時(shí)的摩擦角接近一致。循環(huán)加載dη0和dη0路徑上的剪脹線都近似地呈線性關(guān)系。初始加載(單調(diào))和初始卸載剪脹線是循環(huán)加載時(shí)剪脹線的邊界線(外包線),循環(huán)荷載下的剪脹線均位于邊界線的內(nèi)側(cè),當(dāng)循環(huán)荷載下剪脹線達(dá)到初始剪脹線后兩者一致。循環(huán)荷載下剪脹線位置與卸載反彎點(diǎn)位置有密切關(guān)系,反彎點(diǎn)距初始加載剪脹線越遠(yuǎn),卸載后剪脹線偏離初始卸載剪脹線的距離越大。離散元數(shù)值試驗(yàn)的循環(huán)剪脹特性與堆石料的結(jié)果是一致的。(5)在試驗(yàn)研究和廣義塑性模型框架的基礎(chǔ)上,采用邊界面和臨界狀態(tài)理論,與劉華北教授合作提出了一個(gè)考慮顆粒破碎的狀態(tài)相關(guān)堆石料廣義塑性模型。該模型將初始孔隙比作為模型輸入?yún)?shù),模型參數(shù)與初始孔隙比無關(guān)。模型可以反映堆石料在單調(diào)和循環(huán)條件下的變形特性。采用該堆石料模型,開展了面板堆石壩靜、動(dòng)彈塑性有限元數(shù)值模擬,分析了碾壓顆粒破碎引起的級(jí)配變化對(duì)堆石壩計(jì)算變形的影響。計(jì)算表明:三軸試驗(yàn)如不考慮碾壓過程中顆粒破碎對(duì)級(jí)配變化的影響,據(jù)此計(jì)算的結(jié)果會(huì)明顯地低估大壩的變形,對(duì)大壩的安全性評(píng)價(jià)是十分不利的,這可能是目前有限元計(jì)算的高壩沉降變形比實(shí)測(cè)偏小的主要原因之一。(6)在平面應(yīng)變條件下的接觸面模型基礎(chǔ)上,采用邊界面理論,提出了一個(gè)三維廣義塑性接觸面模型。該模型可以反映不同初始孔隙比和不同法向約束條件下接觸面在三維單調(diào)和循環(huán)條件下的變形特性,能夠考慮單調(diào)和循環(huán)荷載下顆粒破碎的影響及剪切的三維耦合效應(yīng)。采用該接觸面模型,對(duì)某在建面板堆石壩進(jìn)行了三維有限元靜、動(dòng)力彈塑性有限元數(shù)值模擬,分析了接觸面模型對(duì)面板與墊層間接觸面變形及面板應(yīng)力的影響。結(jié)果表明:相比雙曲線(僅靜力計(jì)算)和理想彈塑性接觸面模型,廣義塑性接觸面模型能更好地描述三維條件下接觸面的剪脹、剪縮和循環(huán)殘余變形特性。(7)基于本文提出的考慮顆粒破碎的狀態(tài)相關(guān)堆石料廣義塑性模型和三維廣義塑性接觸面模型,對(duì)紫坪鋪面板堆石壩進(jìn)行了靜、動(dòng)力彈塑性有限元數(shù)值模擬。首先根據(jù)大壩填筑沉降和汶川地震后殘余變形反饋分析獲取了堆石料模型參數(shù)。在此基礎(chǔ)上,分析了大壩動(dòng)力反應(yīng)和殘余變形規(guī)律,著重研究了汶川地震時(shí)紫坪鋪面板堆石壩面板脫空現(xiàn)象。結(jié)果表明,面板與墊層間的脫空與土體變形和面板剛度有密切的關(guān)系。紫坪鋪面板堆石壩震后面板脫空區(qū)域較大,與震前水位有著密切的關(guān)系,水位以上由于面板的法向約束較小,面板更容易發(fā)生脫空。面板錯(cuò)臺(tái)是震后二期面板頂部出現(xiàn)較明顯脫空的主要原因。本文發(fā)展的筑壩堆石料和面板與墊層間接觸面彈塑性模型可以較好的再現(xiàn)汶川地震下紫坪鋪面板堆石壩殘余變形和面板脫空過程。
[Abstract]:Although the compaction density and deformation modulus of modern CFRD are much higher than those of earlier stage, the deformation of dam body is still the main problem in safety design of CFRD. Guan. In recent years, problems such as compression failure of face slab and void of face slab occurred during filling, impoundment and earthquake of high face rockfill dam. These problems are closely related to deformation of rockfill and contact deformation between face slab and cushion. In recent years, the elastic-plastic finite element analysis of the filling and impoundment process of CFRD has been greatly developed. However, due to the lack of seismic damage data under strong earthquake, the development of dynamic elastic-plastic analysis method for CFRD has been certain. At present, the equivalent linear analysis method widely used in the dynamic analysis of CFRD can better reflect the acceleration response of moderate and low intensity earthquakes, but it can not meet the analysis requirements of the simulation of the whole process of strong nonlinearity and even failure that may occur in the strong earthquake environment of the dam. Deformation is the main cause of extrusion failure and slab void, but the equivalent linear analysis method can not consider the progressive development of plastic deformation under dynamic conditions, and it is difficult to evaluate the effect of rock-fill deformation on slab failure under strong earthquake. In this paper, the effect of large-scale triaxial apparatus on the grain size of dam-building rockfill materials is firstly adopted. A generalized plastic model of state-dependent rockfill material considering particle breakage is proposed. Then a three-dimensional generalized plastic contact surface model is proposed. Finally, an elastoplastic constitutive model based on the interface between rockfill material and face slab and cushion is established. Three-dimensional static and dynamic elastic-plastic finite element analysis method of concrete face rockfill dam is applied to the static and dynamic elastic-plastic finite element analysis of Zipingpu concrete face rockfill dam during filling, impoundment and earthquake. The results show that there is a good hyperbolic relationship between the particle breakage rate and the plastic work under monotonic and cyclic loads, and the effect of void ratio, confining pressure and stress path is less. (2) The relationship between the particle breakage and the critical state is analyzed by using the sand test results in the literature. The critical state of the rockfill materials for Ziping Pavement Dam and the sand and gravel materials for Milan River Dam are studied in order to better reflect the variation of the critical state with particle breakage. The results show that there is a good linear relationship between dilatancy ratio Dp and stress ratio_before peak stress, and the relationship between dilatancy of equal P and_3 paths is basically the same. The stress ratio decreases with the increase of confining pressure. There is a good linear relationship between the phase transformation stress ratio Mf and the state parameter_, and the slope parameter k is less than 0. (4) The dilatancy law of the rockfill and the Altash gravel under Triaxial Cyclic loading is studied. The dilatancy curves on the d 0 and d 0 paths under cyclic loading are approximately linear. The initial loading (monotonic) and initial unloading dilatancy curves are the boundary lines (outer lines) of the dilatancy curves under cyclic loading. The dilatancy curves under cyclic loading are both located inside the boundary lines. The position of dilatancy line under cyclic loading is closely related to the position of unloading reverse bending point. The farther the reverse bending point is from the initial loading dilatancy line, the greater the distance the dilatancy line deviates from the initial unloading dilatancy line after unloading. Consistent. (5) Based on experimental study and generalized plastic model framework, a generalized state-dependent plasticity model for rockfill considering particle breakage is proposed by using boundary surface and critical state theory in collaboration with Professor Liu Huabei. Initial void ratio is taken as the model input parameter, and the model parameters are independent of the initial void ratio. The static and dynamic elastic-plastic finite element numerical simulation of CFRD is carried out by using the model. The influence of gradation change caused by crushing particles on the deformation of CFRD is analyzed. The influence of fragmentation on the gradation change will obviously underestimate the deformation of the dam, which is very unfavorable to the safety evaluation of the dam. This may be one of the main reasons why the settlement deformation of the high dam calculated by the finite element method is smaller than that measured. (6) Based on the contact surface model under plane strain condition, the boundary surface theory is adopted. A three-dimensional generalized plastic contact surface model is proposed. The model can reflect the deformation characteristics of the contact surface under three-dimensional monotonic and cyclic conditions with different initial void ratios and different normal constraints. The influence of particle breakage under monotonic and cyclic loads and the three-dimensional coupling effect of shear can be considered. Three-dimensional finite element static and dynamic elastic-plastic finite element numerical simulation was carried out for the CFRD under construction. The influence of contact surface model on the deformation and stress of the contact surface between the face slab and the cushion was analyzed. The results show that the generalized plastic contact surface model can better describe the deformation of the contact surface between the face slab and the cushion than the hyperbolic (only static calculation) and the ideal elastic-plastic contact surface model. (7) Based on the generalized plastic model of state-dependent rockfill materials and the three-dimensional generalized plastic contact surface model, the static and dynamic elastic-plastic finite element simulation of Ziping Paved Rockfill Dam is carried out. Based on the feedback analysis of the residual deformation after Wenchuan earthquake, the parameters of the rockfill model are obtained, and the dynamic response and residual deformation law of the dam are analyzed. The slab of Zipingpu CFRD has a large void area after the earthquake, which is closely related to the water level before the earthquake. It is easier for the slab to void above the water level because the normal restraint of the slab is small. Surface elastic-plastic model can reproduce the residual deformation and slab void process of Ziping Paved Rockfill Dam under Wenchuan earthquake.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TV641.43

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 梁軍,劉漢龍,高玉峰;堆石料流變的特性研究與反分析[J];防災(zāi)減災(zāi)工程學(xué)報(bào);2004年01期

2 程展林,丁紅順;堆石料蠕變特性試驗(yàn)研究[J];巖土工程學(xué)報(bào);2004年04期

3 劉萌成,高玉峰,黃曉明;考慮強(qiáng)度非線性的堆石料彈塑性本構(gòu)模型研究[J];巖土工程學(xué)報(bào);2005年03期

4 程展林,丁紅順;論堆石料力學(xué)試驗(yàn)中的不確定性[J];巖土工程學(xué)報(bào);2005年10期

5 肖貢元;;宜興抽水蓄能電站上庫主壩堆石料的特殊研究[J];水利水電科技進(jìn)展;2005年06期

6 田堪良,張慧莉,駱亞生;堆石料的剪切強(qiáng)度與應(yīng)力 應(yīng)變特性[J];巖石力學(xué)與工程學(xué)報(bào);2005年04期

7 喬國鋒;;龍首二級(jí)電站堆石壩面板堆石料試驗(yàn)研究[J];甘肅水利水電技術(shù);2006年02期

8 程展林;丁紅順;;堆石料工程特性試驗(yàn)研究[J];人民長江;2007年07期

9 王?;殷宗澤;;堆石料長期變形的室內(nèi)試驗(yàn)研究[J];水利學(xué)報(bào);2007年08期

10 劉瑩;羅林峰;;堆石料強(qiáng)度及變形研究[J];吉林水利;2008年09期

相關(guān)會(huì)議論文 前10條

1 李體建;;三板溪強(qiáng)風(fēng)化堆石料的工程特性[A];巖土工程學(xué)術(shù)交流會(huì)文集[C];2004年

2 張?chǎng)?李海芳;葛克水;張茵琪;;小浪底水電站堆石料流變特性試驗(yàn)研究[A];水庫大壩建設(shè)與管理中的技術(shù)進(jìn)展——中國大壩協(xié)會(huì)2012學(xué)術(shù)年會(huì)論文集[C];2012年

3 耿麗;吳小波;浦滬軍;黃志強(qiáng);;堆石料強(qiáng)度及變形特性的細(xì)觀模擬與分析[A];第22屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集第Ⅰ冊(cè)[C];2013年

4 楊貴;劉漢龍;陳育民;沈揚(yáng);;堆石料動(dòng)力變形特性的尺寸效應(yīng)研究[A];現(xiàn)代水利水電工程抗震防災(zāi)研究與進(jìn)展[C];2009年

5 齊俊修;;堆石料與基巖大型直剪試驗(yàn)研究[A];土石壩與巖土力學(xué)技術(shù)研討會(huì)論文集[C];2001年

6 楊玉娟;潘家軍;陳云;;堆石料三軸試驗(yàn)中的顆粒破碎研究[A];現(xiàn)代水利水電工程抗震防災(zāi)研究與進(jìn)展(2011年)[C];2011年

7 邵磊;遲世春;賈宇峰;;堆石料三軸試驗(yàn)的細(xì)觀模擬[A];中國力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年

8 李海芳;張茵琪;;堆石料蠕變?cè)囼?yàn)中的側(cè)縮現(xiàn)象[A];第十一屆全國土力學(xué)及巖土工程學(xué)術(shù)會(huì)議論文集[C];2011年

9 姜菲;溫彥鋒;李海芳;鄧剛;;堆石料蠕變特性試驗(yàn)研究[A];第十一屆全國土力學(xué)及巖土工程學(xué)術(shù)會(huì)議論文集[C];2011年

10 蔡新;宋小波;明宇;楊杰;傅華;;膠凝堆石料動(dòng)本構(gòu)關(guān)系及動(dòng)模量衰減模型[A];現(xiàn)代水利水電工程抗震防災(zāi)研究與進(jìn)展(2013年)[C];2013年

相關(guān)博士學(xué)位論文 前5條

1 孫國亮;堆石料風(fēng)化過程中的抗剪強(qiáng)度和變形特性研究[D];清華大學(xué);2009年

2 張幸幸;堆石料彈塑性循環(huán)本構(gòu)模型研究及應(yīng)用[D];清華大學(xué);2015年

3 劉京茂;堆石料和接觸面彈塑性本構(gòu)模型及其在面板堆石壩中的應(yīng)用研究[D];大連理工大學(xué);2015年

4 孔德志;堆石料的顆粒破碎應(yīng)變及其數(shù)學(xué)模擬[D];清華大學(xué);2009年

5 岑威鈞;堆石料亞塑性本構(gòu)模型及面板堆石壩數(shù)值分析[D];河海大學(xué);2005年

相關(guān)碩士學(xué)位論文 前10條

1 李士杰;基于細(xì)觀接觸理論的堆石料解析本構(gòu)關(guān)系研究[D];大連理工大學(xué);2015年

2 房恩澤;筑壩土石料動(dòng)力特性研究[D];大連理工大學(xué);2015年

3 孫庚;堆石料的蠕變特性試驗(yàn)研究[D];中國水利水電科學(xué)研究院;2016年

4 吳曉翔;中低混凝土面板堆石壩變形對(duì)大壩安全影響的研究[D];浙江大學(xué);2015年

5 王勇;堆石料滲透特性試驗(yàn)研究[D];河海大學(xué);2006年

6 張?chǎng)?堆石料的流變特性實(shí)驗(yàn)及其流變模型的研究[D];中國地質(zhì)大學(xué)(北京);2013年

7 張茵琪;堆石料蠕變模型試驗(yàn)研究[D];中國水利水電科學(xué)研究院;2013年

8 程博;堆石壩壩體堆石料蠕變特性試驗(yàn)研究[D];北京工業(yè)大學(xué);2012年

9 侯新強(qiáng);吉林臺(tái)一級(jí)水電站爆破堆石料的三軸試驗(yàn)研究[D];新疆農(nóng)業(yè)大學(xué);2005年

10 付永春;價(jià)值工程在壩體堆石料開采中的應(yīng)用[D];四川大學(xué);2003年

,

本文編號(hào):2184543

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2184543.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶01173***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com