峽江庫區(qū)土工檢測數(shù)據(jù)分析及堤防滲流的數(shù)值模擬研究
[Abstract]:Seepage problem and seepage deformation are always the important reasons for the dangerous situation of embankment. This paper discusses the present situation and development process of seepage analysis and seepage failure type of levees, which has important reference value and practical significance for reasonable analysis and evaluation of levee safety performance and taking reasonable seepage prevention measures. The parameters of compaction, particle fraction, specific gravity and liquid-plastic limit test in geotechnical test are predicted and analyzed by intelligent algorithm. The maximum dry density, specific gravity, particle fraction and limit moisture content are taken as the input of the model, and the permeability coefficient is taken as the predicted output of the model. In order to verify the feasibility of the intelligent algorithm in data prediction, the model output value is compared with the experimental value obtained from the permeation test, which can be used as the reference value of the permeability coefficient test, and it can also be used as the field non-permeability coefficient test condition. Approximate value of the required permeability coefficient for engineering. Combined with a protection project in Xijiang reservoir area, the seepage condition of the levee of the protection project is analyzed by using finite element software, thus providing the basis for the seepage prevention measures taken by the protection project. The main contents of this paper are as follows: 1. The test methods of compaction, particle fraction, specific gravity, liquid-plastic limit, permeability coefficient and so on in the geotechnical test of Xijiang reservoir area are introduced, and the test parameters obtained from the geotechnical test are introduced. As the input and output value of intelligent algorithm prediction and analysis model. 2. Aiming at the lack of geotechnical detection data in Xiajiang reservoir area project, the SVM algorithm is selected to solve small sample problem in intelligent algorithm. The geotechnical testing data are analyzed and compared with the FOAGRNN and BP algorithms to verify the high accuracy characteristics of the SVM algorithm for small sample training. 3. Combining with the design data of a dike project in Xiajiang River, Using finite element software to model and analyze the levee project, the seepage condition of the levee is obtained. According to the seepage analysis result, the corresponding seepage prevention measures are adopted. This paper also introduces the construction process and main methods of seepage prevention measures of the levee project.
【學位授予單位】:南昌大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TV223.4;TV871
【參考文獻】
相關(guān)期刊論文 前10條
1 張瑩;潘保芝;;基于主成分分析的SOM神經(jīng)網(wǎng)絡在火山巖巖性識別中的應用[J];測井技術(shù);2009年06期
2 張金澤;單甘霖;;改進的SVM算法及其在故障診斷中的應用研究[J];電光與控制;2006年06期
3 劉一波,屠厚澤,陸文興;現(xiàn)場量測位移反分析法及在地下工程中的應用[J];地質(zhì)與勘探;1997年03期
4 肖四喜,李銀平;大堤管涌形成機理分析及治理方法[J];工程勘察;2000年03期
5 姜紹飛;張帥;;基于模糊神經(jīng)網(wǎng)絡的數(shù)據(jù)融合結(jié)構(gòu)損傷識別方法[J];工程力學;2008年02期
6 胡耀波,李鵬,熊惟皓;BP神經(jīng)網(wǎng)絡的實現(xiàn)及應用[J];機械工程材料;2002年06期
7 藺慧敏;李想;李廣會;;堤防滲透變形破壞型式的判別方法[J];黑龍江水利科技;2009年04期
8 詹士昌,徐婕,吳俊;蟻群算法中有關(guān)算法參數(shù)的最優(yōu)選擇[J];科技通報;2003年05期
9 韓名乾;;堤壩地基土滲透變形類型的判別[J];科技信息;2009年33期
10 王晶;楊懋新;劉金平;;基于PNN神經(jīng)網(wǎng)絡的地震屬性反演技術(shù)[J];科學技術(shù)與工程;2011年27期
相關(guān)博士學位論文 前1條
1 殷德勝;巖體滲流與應力分析的數(shù)值方法研究[D];武漢大學;2010年
本文編號:2176821
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2176821.html