水輪發(fā)電機組模型參數(shù)辨識與故障診斷方法研究
[Abstract]:With the continuous development of the hydropower industry in China, large hydropower stations have been built and put into operation. The turbine generator sets gradually to large capacity and high water head direction. It is important to ensure the safe and stable operation of the turbine generator set to improve the economic benefits of the power plant and ensure the safety of the power plant and the basin. The operation mechanism of the strong nonlinear and complex giant systems with multi field coupling is not completely clear. The modeling and fault diagnosis of the unit is always the difficult problem in the related research and engineering application. In this context, the system identification theory of the turbine generator set is deeply studied, the modeling of the turbine generator set and the model parameter identification research are carried out. It not only has important theoretical significance and engineering application value for improving the control quality of the turbine generator set, improving the power quality and maintaining the stability of the power system, but also provides theoretical basis and technical support for the fault diagnosis of the turbine generator set. This paper is based on the model parameter identification of the turbine generator set and the fine modeling of the unit. As well as the problems in fault diagnosis, in order to establish a fine turbine generator model and explore advanced fault diagnosis methods, through in-depth analysis of the actual operation characteristics of hydroelectric units, combined with system identification theory, intelligent optimization method and dynamic system identification method, it is suitable for unit control and power system analysis. The model based fault diagnosis method of water turbine generator set is carried out in depth. The modeling theory of Volterra series, generalized frequency response function (GFRF) and nonlinear output frequency response function is introduced, and the model of turbine generator set is established by the method of parameter identification, and the model is used to model the model. The main research contents and innovative achievements of this paper are as follows:1.
(1) the existing hydraulic turbine model is deeply studied, and the applicable scope and advantages and disadvantages of various hydraulic turbine models are summarized and summed up. In view of the problem that the hydraulic loss of the water guide mechanism can not be ignored and the model mechanism is complex, the method of curve fitting is introduced to establish the fine model of the hydraulic turbine which consider the hydraulic loss of the water guide mechanism. It is introduced to the parameter identification of the fine model of the turbine. In order to improve the slow convergence rate and easy to fall into the "local optimum", an improved artificial fish swarm algorithm (IAFSA) is proposed to improve the convergence and accuracy of the algorithm. The proposed method realizes the hydraulic loss curve of the hydraulic turbine refinement model and the water guide mechanism. Step identification.
(2) in order to simplify the network structure of the power system and meet the needs of the analysis of the power system, the equivalent modeling of the small and medium hydropower units is studied. The equivalent model of the five order generator set is set up more suitable for the salient effect of the turbine generator, and a small and medium hydropower cluster based on the study of the data of the multi point PMU measurement data and the contact line data is proposed. The target function is identified by the equivalent model, and the identification strategy is improved to improve the identification efficiency. A large number of simulation tests are carried out by the comprehensive program of the Institute of power science. The results show that the proposed method can effectively solve the problem of multi solution of the equivalent model, and the identification accuracy and identification efficiency are also greatly improved.
(3) the modeling method based on Volterra series is deeply studied. The relationship between the excitation force and the vibration of the rotating machinery system of the turbine generator set is analyzed, and the Volterra model of the system is established. The characteristics of the input quantity of the Volterra time domain model of the rotating machinery system and the shortcomings of the traditional identification method are deeply analyzed, and an improved Volterr is put forward. The identification method of the A-number model improves the identification precision of the Volterra time domain model. At the same time, the fault diagnosis model based on the neural network and the time domain kernel function of the Volterra is constructed according to the characteristics of the Volterra kernel function which can reflect the structure characteristics of the system, and the proposed method is verified by the simulation example and the experimental analysis.
(4) aiming at the problem of the difficulty in monitoring and identifying the state of the turbine runner, a blind identification method based on high order statistics is used to identify the parameters of the time domain Volterra model of the turbine runner. At the same time, the frequency domain form of the Volterra model is discussed, the generalized frequency response model of the turbine wheel is constructed, and the turbine runner is constructed. The generalized frequency response analysis is used to analyze the change of its working condition.
(5) in view of the shortage of fault samples of water turbine generator sets, the problem of the development of the fault diagnosis method is limited. The finite element simulation method is used to model and simulate the fault vibration response of the turbine generator set, and a nonlinear output response function identification method based on the on-line measurement information is proposed. The fault diagnosis system of hydro-generator set is constructed based on linear output function and SVM classifier, and the effective identification of vibration fault of hydro-generator set is realized.
【學位授予單位】:華中科技大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TV734.1;TV738
【相似文獻】
相關期刊論文 前10條
1 歐學修;水輪發(fā)電機組的選型和制造及安裝[J];四川電力技術;2001年03期
2 余小波;“三峽水輪發(fā)電機組研制”通過國家級鑒定驗收[J];四川水力發(fā)電;2001年S1期
3 李海紅;水電廠中水輪發(fā)電機組的效率監(jiān)測[J];青海電力;2002年03期
4 闞喜森,黃學斌;淺談水輪發(fā)電機組改造中應用新技術[J];農(nóng)村電氣化;2002年06期
5 張培;水輪發(fā)電機組進水受潮后的處理[J];農(nóng)村電氣化;2002年12期
6 ;水輪發(fā)電機組值班員(中級、高級)鑒定內(nèi)容及要求[J];云南電業(yè);2003年02期
7 ;水輪發(fā)電機組機械檢修工(中級、高級)鑒定內(nèi)容及要求[J];云南電業(yè);2003年03期
8 ;水輪發(fā)電機組局部放電在線監(jiān)測新技術[J];電網(wǎng)技術;2004年03期
9 牟官華;;水輪發(fā)電機組圓形部件的測量與計算分析研究[J];水力發(fā)電學報;2007年05期
10 ;利用河水動力發(fā)電的水輪發(fā)電機組[J];軍民兩用技術與產(chǎn)品;2010年01期
相關會議論文 前10條
1 趙宏;;基于優(yōu)化遺傳神經(jīng)網(wǎng)絡的水輪發(fā)電機組辨識[A];第二十四屆中國控制會議論文集(下冊)[C];2005年
2 周中建;;淺析水輪發(fā)電機組的振動分析與在線監(jiān)測[A];2006年水力發(fā)電學術研討會論文集[C];2006年
3 曹聞一;;雙轉(zhuǎn)輪水輪發(fā)電機組的研究與應用[A];中國水利學會2008學術年會論文集(下冊)[C];2008年
4 李榮明;涂露;;淺談提高水輪發(fā)電機組推力瓦端面型測溫可靠性的方法[A];貴州省電機工程學會2010年優(yōu)秀論文集[C];2010年
5 魏智民;;喜河水電廠三臺水輪發(fā)電機組穩(wěn)定性試驗結(jié)論及運行對策[A];陜西省水力發(fā)電工程學會青年優(yōu)秀學術論文集[C];2008年
6 丁仁山;;影響新裝巨型水輪發(fā)電機組安全穩(wěn)定運行的幾個原因及預防措施[A];水輪發(fā)電機組穩(wěn)定性技術研討會論文集[C];2007年
7 李效旭;鄭源;潘虹;;水輪發(fā)電機組檢修的三維仿真系統(tǒng)研究[A];第十八次中國水電設備學術討論會論文集[C];2011年
8 李鵬;;淺談轉(zhuǎn)子一點接地保護在三峽700MW水輪發(fā)電機組中的應用[A];中國水力發(fā)電工程學會電力系統(tǒng)自動化專委會2009年年會暨學術交流會論文集[C];2009年
9 張貴林;;雙排400MW水輪發(fā)電機組的運行穩(wěn)定性[A];水輪發(fā)電機組穩(wěn)定性技術研討會論文集[C];2007年
10 李宇春;張芳;楊曉焱;余菲;蔣婭;;水輪發(fā)電機組部件材料的失效分析研究[A];全國大中型水電廠技術協(xié)作網(wǎng)技術交流文集(十三)水電廠改造專集[C];2010年
相關重要報紙文章 前10條
1 顧兆農(nóng);首臺國產(chǎn)70萬千瓦水輪發(fā)電機組三峽投產(chǎn)[N];人民日報;2007年
2 ;三峽特大型水輪發(fā)電機組國產(chǎn)化取得突破[N];人民日報;2005年
3 韓惠敏邋宋亞平;世界首臺70萬千瓦水輪發(fā)電機組在哈問世[N];工人日報;2007年
4 特約通訊員 劉茂祥;三峽工程首臺國產(chǎn)巨型水輪發(fā)電機組投產(chǎn)[N];人民長江報;2007年
5 通訊員 嚴鎮(zhèn)威;世界最大水輪發(fā)電機組由水電十四局安裝完成并試運行[N];云南日報;2007年
6 記者 李冰峰 通訊員 吳健華 李海娟;我市水輪發(fā)電機組首次出口北美市場[N];金華日報;2010年
7 孫世巖;自主創(chuàng)新取得豐碩成果 后三峽時代哈電面臨新考[N];中國工業(yè)報;2005年
8 施勇峰 戴勁松;我國開始步入自主開發(fā)制造巨型水輪發(fā)電機組時代[N];中國水利報;2005年
9 記者 申明;三峽水電站左岸14號機組開始發(fā)電[N];科技日報;2005年
10 楊雄;我國開始步入自主開發(fā)制造巨型水輪發(fā)電機組時代[N];中國水利報;2006年
相關博士學位論文 前9條
1 白冰;水輪發(fā)電機組軸系辨識及振動研究[D];昆明理工大學;2015年
2 夏鑫;水輪發(fā)電機組模型參數(shù)辨識與故障診斷方法研究[D];華中科技大學;2015年
3 何保華;水輪發(fā)電機組轉(zhuǎn)子動平衡數(shù)值仿真[D];華中科技大學;2009年
4 喬衛(wèi)東;水輪發(fā)電機組軸系動力特性分析及軸線精度檢測方法研究[D];西安理工大學;2006年
5 黃志偉;基于非線性轉(zhuǎn)子動力學的水輪發(fā)電機組振動機理研究[D];華中科技大學;2011年
6 閻宗國;基于動載荷識別和數(shù)值計算的水輪發(fā)電機組穩(wěn)定性研究[D];中國農(nóng)業(yè)大學;2013年
7 張雷克;水輪發(fā)電機組軸系非線性動力特性分析[D];大連理工大學;2014年
8 呂桂萍;水輪發(fā)電機組大部件剛強度及動態(tài)特性研究[D];沈陽工業(yè)大學;2004年
9 劉益劍;水輪發(fā)電機組BGNN模型辨識控制及控制器參數(shù)優(yōu)化研究[D];武漢大學;2009年
相關碩士學位論文 前10條
1 劉福秀;考慮動剛度和動強度的水輪發(fā)電機組可靠性優(yōu)化設計方法研究[D];廣西大學;2015年
2 尤莉莎;混流式水輪發(fā)電機組振動試驗及故障診斷[D];河北工程大學;2015年
3 劉洋;基于非線性振動的多失效模式水輪發(fā)電機組可靠性研究[D];廣西大學;2013年
4 張雪源;水輪發(fā)電機組綜合指標監(jiān)測系統(tǒng)[D];大連理工大學;2002年
5 趙蕊;信息融合在水輪發(fā)電機組故障診斷系統(tǒng)中的應用研究[D];中南大學;2007年
6 黃凱;水輪發(fā)電機組振動特性研究及其應用[D];華中科技大學;2013年
7 姜洋;水輪發(fā)電機組軸系統(tǒng)扭轉(zhuǎn)振動研究[D];大連理工大學;2008年
8 周萬里;葛洲壩水電廠水輪發(fā)電機組主軸動力分析[D];華中科技大學;2009年
9 張強;水電站水輪發(fā)電機組效率在線監(jiān)測系統(tǒng)的開發(fā)與研究[D];河海大學;2004年
10 張偉;水輪發(fā)電機組軸系統(tǒng)動力學研究[D];大連理工大學;2008年
,本文編號:2165534
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2165534.html