港口灣水庫(kù)大壩變形監(jiān)測(cè)模型的研究分析
[Abstract]:Deformation monitoring is an important means to monitor the safety of deformable body. The concrete process is to obtain the original deformation data by monitoring the deformable body, and then analyze and process the deformation data to judge the safety condition of the deformable body. In the initial water storage and long-term operation, the dam has the possibility of accidents. In case of abnormal state of dam, it must be detected and dealt with in time, otherwise it may lead to serious consequences. But for the deformation analysis of dam type monitoring object, in addition to paying attention to the deformation state in the past, we should also predict the deformation that may occur in the future, monitor the safety condition of the deformable body in real time, and prevent the safety accident in advance. Therefore, it is necessary to establish the model of deformation prediction for monitoring body. The deformation monitoring model is to make statistical analysis of the existing deformation monitoring data, to find out the regularity between the data, and to establish the monitoring model by using modeling tools, so as to predict the possible shape variables of the next cycle. In this paper, the deformation of the dam of Port Bay Reservoir is taken as the object of deformation monitoring, and a large number of deformation monitoring data of different monitoring periods from 2003 to 2012 are obtained. The Matlab software, which has a powerful function of numerical calculation and simulation, is used as a tool. The limit error method and Lagrange interpolation method are used to preprocess the original monitoring data. According to the grey system analysis theory and the artificial neural network theory, the original data are sorted out in monthly, quarterly and annual periods, respectively. The GM (1 + 1) model and BP neural network model are established for prediction and analysis. The reliability of the model is analyzed in combination with the actual situation of the port bay reservoir dam, and some conclusions suitable for dam safety monitoring of the port bay reservoir are obtained.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TV698.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳亮亮;郭杭;管曉燕;董建良;;BP模型在變形監(jiān)測(cè)數(shù)據(jù)分析和預(yù)測(cè)中的應(yīng)用[J];測(cè)繪科學(xué);2008年04期
2 岳建平;方露;黎昵;;變形監(jiān)測(cè)理論與技術(shù)研究進(jìn)展[J];測(cè)繪通報(bào);2007年07期
3 李波;劉明軍;張治軍;;未確知濾波法和灰色模型在大壩變形預(yù)測(cè)中的應(yīng)用[J];長(zhǎng)江科學(xué)院院報(bào);2011年10期
4 王玉成;;神經(jīng)網(wǎng)絡(luò)應(yīng)用于大壩安全評(píng)價(jià)的方法研究[J];大壩與安全;2010年06期
5 桂小梅;;淺談沉降監(jiān)測(cè)曲線圖繪制的兩種方法[J];測(cè)繪與空間地理信息;2011年01期
6 喻興旺,程鳴堅(jiān),徐忠陽(yáng),衛(wèi)建東;TCA2003全站儀在港口灣水庫(kù)大壩變形監(jiān)測(cè)中的應(yīng)用[J];水電自動(dòng)化與大壩監(jiān)測(cè);2003年05期
7 周命端;郭際明;文鴻雁;汪偉;;基于優(yōu)化初始值的GM(1,1)模型及其在大壩監(jiān)測(cè)中的應(yīng)用[J];水電自動(dòng)化與大壩監(jiān)測(cè);2008年02期
8 李衛(wèi)華;王淑娟;;基于優(yōu)化初始值的GM(1,1)模型在大壩變形監(jiān)測(cè)中的應(yīng)用[J];廣東水利水電;2010年08期
9 劉智敏,林文介;大壩變形監(jiān)測(cè)自動(dòng)化技術(shù)的最新發(fā)展[J];桂林工學(xué)院學(xué)報(bào);2000年01期
10 牛景太;魏博文;;基于蟻群優(yōu)化神經(jīng)網(wǎng)絡(luò)的混凝土壩位移安全監(jiān)控模型[J];甘肅水利水電技術(shù);2012年07期
相關(guān)博士學(xué)位論文 前2條
1 李富強(qiáng);大壩安全監(jiān)測(cè)數(shù)據(jù)分析方法研究[D];浙江大學(xué);2012年
2 劉楚喬;邊坡穩(wěn)定性攝影監(jiān)測(cè)分析系統(tǒng)研究[D];武漢理工大學(xué);2008年
本文編號(hào):2161131
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2161131.html