海洋附著生物對(duì)硫鋁酸鹽水泥混凝土表面結(jié)構(gòu)的影響研究
本文選題:藤壺 + 附著 ; 參考:《濟(jì)南大學(xué)》2014年碩士論文
【摘要】:隨著硫鋁酸鹽水泥混凝土在海洋工程中的應(yīng)用的日益增多,發(fā)現(xiàn)海洋環(huán)境下的硫鋁酸鹽水泥混凝土表層常附著有大量的海洋附著生物,這些附著生物中,藤壺是最強(qiáng)的優(yōu)勢(shì)群種。研究發(fā)現(xiàn)海洋生物的附著對(duì)海洋工程產(chǎn)生一定的影響,但影響結(jié)果及作用機(jī)理尚未明確,因此本文研究以藤壺為主要的海洋附著生物,研究其附著之后對(duì)硫鋁酸鹽水泥混凝土表面結(jié)構(gòu)及表面理化性能的影響,同時(shí)對(duì)藤壺附著之后混凝土的力學(xué)性能、表層抗?jié)B性能、抗碳化性能進(jìn)行了研究。研究結(jié)果表明: (1)酵母粉、蔗糖、蛋白胨等營(yíng)養(yǎng)物質(zhì)對(duì)藤壺的附著影響不大,而海洋自然環(huán)境對(duì)藤壺的附著起著重要作用,生長(zhǎng)繁殖的適宜溫度為20℃~28℃,海水pH為7.9~8.4。藤壺可以在海洋環(huán)境中的大部分基材上附著,不同附著基材表面藤壺的底盤厚度不同,混凝土、石頭、紅磚、空心磚表層底盤厚度分別約為400μm、300μm、100μm、100μm。其中石頭和混凝土的底盤較為致密,而紅磚和空心磚的底盤較為疏松。通過紅外光譜分析,藤壺膠體主要官能團(tuán)為胺基(-NH2)、羰基(C=O)以及-C-N、-(CH2)n,n≥4。 (2)藤壺幼蟲較易附著在高表面能基材上,實(shí)驗(yàn)得到硫鋁酸鹽水泥未水化和水化6h的表面能分別為51.46mJ·m-2和58.26mJ·m-2,隨水化進(jìn)行其表面能增大。普通硅酸鹽水泥未水化和水化6h的表面能分別為49.37mJ·m-2和56.32mJ·m-2。水化時(shí)間相同時(shí),硫鋁酸鹽水泥的表面能高于普通硅酸鹽水泥的表面能。 (3)藤壺的附著在混凝土表層形成一層生物膜層,生物膜層除上殼體外,還包括藤壺底盤以及藤壺膠體。藤壺底盤主要元素為C、O、Ca,結(jié)構(gòu)十分致密,是一層天然的鈣質(zhì)層。藤壺膠體層厚度為10μm~20μm,主要元素為C、N、O,結(jié)構(gòu)疏松,可將藤壺緊密粘附在混凝土表層,同時(shí)膠體物質(zhì)可滲入混凝土表層孔洞中。藤壺附著之后C30和C50混凝土表層孔隙率分別降低4.9%和8.6%,表層孔的中值孔徑分別降低23.4%和80.1%。C30混凝土經(jīng)模擬海水侵蝕后孔徑在100μm~200μm和50μm~100μm的孔體積分別為21.52×10-3ml和3.69×10-3ml,經(jīng)天然海水侵蝕后分別為2.4×10-3ml和20.05×10-3ml,天然海水中的混凝土試塊表面小孔體積增加,孔徑更加細(xì)化。 (4)硫鋁酸鹽水泥混凝土試塊經(jīng)過六個(gè)月侵蝕之后,C30混凝土經(jīng)淡水、模擬海水、天然海水侵蝕后的強(qiáng)度分別為39.3MPa、41.6MPa、42.3MPa,C50混凝土經(jīng)淡水、模擬海水、天然海水侵蝕后的強(qiáng)度分別為51.8MPa、56.5MPa、58.3MPa。藤壺附著對(duì)混凝土的力學(xué)性能影響不明顯。C30和C50強(qiáng)度等級(jí)混凝土的滲透時(shí)間分別為淡水263s、1066s,模擬海水922s、1821s,天然海水958s、1934s,,藤壺附著后對(duì)表層抗?jié)B性分別提高4%和6.2%。C30硫鋁酸鹽水泥混凝土,天然海水侵蝕的試塊7d碳化深度為1.6mm,28d時(shí)為5.6mm,增長(zhǎng)250.0%;模擬海水侵蝕的試塊碳化7d時(shí)深度為3.4mm,28d時(shí)為8.3mm,增長(zhǎng)144.1%;藤壺附著之后7d碳化深度降低52.9%,28d降低12.5%。藤壺附著可提高硫鋁酸鹽水泥混凝土的抗碳化性能,且對(duì)早期抗碳化性提高較大。
[Abstract]:With the increasing application of sulphoaluminate cement concrete in marine engineering, it is found that there are a lot of marine attachments attached to the surface of sulphoaluminate cement concrete under marine environment, and the barnacles are the most dominant species in these attachments. The effect and mechanism of the effect are not clear. Therefore, this paper studies the effect of the attachment of barnacles on the surface structure and the surface physical and chemical properties of the sulphoaluminate cement concrete. At the same time, the mechanical properties of the concrete, the surface resistance and the carbonization resistance after the attachment of the barnacle are studied. The results show that:
(1) yeast, sucrose, peptone and other nutrients have little influence on the attachment of barnacles, and the marine natural environment plays an important role in the attachment of barnacles. The suitable temperature for growth and reproduction is 20 ~28 C, and the pH of the sea water is 7.9 ~ 8.4. in most of the base material in the marine environment, and the thickness of the base of the barnacle on the surface of the substrate is different. The thickness of the surface of concrete, stone, red brick and hollow brick is about 400 mu m, 300 mu m, 100 mu m, 100 m., and the chassis of stone and concrete is more compact, and the chassis of red brick and hollow brick is loose. The main functional groups of barnacle colloid are amino group (-NH2), carbonyl (C=O) and -C-N, CH2 n, n > 4. by infrared spectroscopy.
(2) the barnacle larvae are more easily attached to the substrate of high surface energy. The surface energy of the unhydrated and hydrated 6h of the aluminate cement is 51.46mJ m-2 and 58.26mJ m-2 respectively. The surface energy of the normal Portland cement without hydration and hydration 6h is the same when the hydration time of 49.37mJ. M-2 and 56.32mJ m-2. is the same, respectively. The surface energy of sulphoaluminate cement is higher than that of ordinary portland cement.
(3) the barnacle is attached to the surface of the concrete to form a layer of biological membrane. The biofilm layer is in addition to the shell and includes the barnacle chassis and the barnacle colloid. The main elements of the barnacle are C, O, Ca, and the structure is very dense. It is a natural calcareous layer. The thickness of the barnacle colloid layer is 10 m ~20 mu m, the main elements are C, N, O, loose structure, and the tight structure of the barnacle. The surface of the concrete can be infiltrated into the surface of the concrete surface, and the porosity of the C30 and C50 concrete is reduced by 4.9% and 8.6% respectively after the barnacle is attached. The median pore size of the surface pores is reduced by 23.4% and the pore volume of the 80.1%.C30 concrete after the simulated seawater erosion is 100 mu m~200 m and 50 mu m~100 mu m respectively. 52 * 10-3ml and 3.69 x 10-3ml are 2.4 * 10-3ml and 20.05 x 10-3ml after natural seawater erosion. The pore volume of the concrete specimen in natural seawater increases and the pore size is more refined.
(4) after six months of erosion of sulphoaluminate cement concrete test block, C30 concrete is simulated seawater through fresh water. The strength of natural seawater eroded by natural seawater is 39.3MPa, 41.6MPa, 42.3MPa, C50 concrete through fresh water, simulated seawater, and the strength after natural seawater erosion is 51.8MPa, 56.5MPa, 58.3MPa. barnacle adhered to the mechanical properties of concrete. The infiltration time of concrete with no obvious influence on.C30 and C50 strength grade is fresh water 263s, 1066s, simulated seawater 922s, 1821s, 958s, 1934s, and natural seawater 958s, 1934s, the surface impermeability of the barnacle is increased by 4% and 6.2%.C30 sulphoaluminate cement concrete respectively. The 7d carbonization depth of natural seawater erosion is 1.6mm, and the 28d is 250%. The depth of carbonized 7d for simulated seawater erosion was 3.4mm, 28d was 8.3mm, increased by 144.1%, and 7d carbonization depth decreased by 52.9% after the barnacle adhered, and 28d reduction of 12.5%. barnacle adhesion could improve the carbonization resistance of sulphoaluminate cement concrete and increased the early carbonization resistance.
【學(xué)位授予單位】:濟(jì)南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TV431
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張明明;趙文;于世超;;我國(guó)海洋污損生物的研究概況[J];水產(chǎn)科學(xué);2008年10期
2 崔正剛,B.P.Binks,J.H.Clint;薄層毛細(xì)滲透技術(shù)測(cè)定多孔性固體顆粒的表面能成分[J];日用化學(xué)工業(yè);2004年04期
3 李倩;宋錫瑾;裴寧;王杰;;水鎂石粉體表面改性及表面能測(cè)算[J];材料科學(xué)與工程學(xué)報(bào);2011年05期
4 史航;王魯民;;海洋污損生物藤壺的附著機(jī)理及防除[J];廣東農(nóng)業(yè)科學(xué);2006年06期
5 季輝;徐永利;;海工鋼筋混凝土結(jié)構(gòu)防腐蝕技術(shù)研究現(xiàn)狀及應(yīng)用[J];公路;2009年09期
6 宋永香,王志政;海洋生物及其粘附機(jī)理——微生物、小型海藻、巨型海藻、貽貝[J];中國(guó)膠粘劑;2002年04期
7 宋永香,王志政;海洋生物及其粘附機(jī)理——藤壺、帽貝、?、管棲蠕蟲[J];中國(guó)膠粘劑;2003年04期
8 王劍云;錢春香;王瑞興;成亮;;菌液浸泡法在水泥基材料表面覆膜研究[J];硅酸鹽學(xué)報(bào);2009年07期
9 丁自強(qiáng);海工混凝土結(jié)構(gòu)的防腐蝕[J];華北水利水電學(xué)院學(xué)報(bào);2000年01期
10 邊蘊(yùn)靜;低表面能防污涂料的最新進(jìn)展[J];化工新型材料;2000年11期
本文編號(hào):2116496
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2116496.html