永定橋水庫(kù)碾壓混凝土重力壩施工分層研究
本文選題:碾壓混凝土重力壩 + 施工分層。 參考:《華北水利水電大學(xué)》2017年碩士論文
【摘要】:碾壓混凝土的施工是一種快速高效的筑壩技術(shù),由于采用土石壩技術(shù)的施工方法,取消了壩體壩段的施工縱縫,澆筑倉(cāng)面比較大,施工的速度較快;然而,大體積混凝土由于水泥水化熱的影響,取消施工縱縫后,澆筑塊的體積增大、散熱緩慢、溫度上升較快,盡管從設(shè)計(jì)及材料方面采取了相關(guān)的溫度控制的措施,但大體積混凝土施工時(shí)的溫度控制仍然是碾壓混凝土施工的關(guān)鍵性課題。加厚鋪筑層厚度,減少分層數(shù)量,可以充分發(fā)揮碾壓施工的快速高效,但混凝土壩分層過(guò)厚,澆筑混凝土的塊體過(guò)大,水泥水化熱釋放的緩慢,溫度升高的過(guò)快,由于以上原因,可能導(dǎo)致混凝土壩體的溫度應(yīng)力太高,最終甚至?xí)霈F(xiàn)溫度裂縫。因此,在滿足溫度控制要求的前提下,加大碾壓混凝土分層厚度,有利于提高碾壓混凝土的施工速度,縮短工期;選擇合適的碾壓混凝土分層厚度是實(shí)際工程中不可回避的問(wèn)題。本文以四川省大渡河瀑布溝水電站移民安置項(xiàng)目永定橋水庫(kù)攔河大壩為研究對(duì)象,借助于有限元仿真分析軟件ANSYS為計(jì)算平臺(tái),對(duì)大壩2#擋水壩段從開始施工到施工完成的整個(gè)施工過(guò)程的溫度場(chǎng)變化進(jìn)行仿真模擬,綜合的考慮了外界環(huán)境、混凝土材料參數(shù)、施工過(guò)程等因素在時(shí)間和空間中的不斷變化。利用ANSYS中軟件中的熱分析模塊和結(jié)構(gòu)分析模塊來(lái)進(jìn)行仿真模擬永定橋水庫(kù)2#擋水壩段施工期分層澆筑過(guò)程的溫度場(chǎng)及應(yīng)力場(chǎng)變化的全過(guò)程,根據(jù)相關(guān)文獻(xiàn)和已建工程經(jīng)驗(yàn),選取20cm、30cm、35cm及40cm四種分層施工厚度進(jìn)行仿真模擬,通過(guò)對(duì)壩體混凝土四種不同分層厚度的仿真計(jì)算,結(jié)果可以用以下幾點(diǎn)表示:(1)20cm的分層厚度在不同施工高程處的基礎(chǔ)溫差、內(nèi)外溫差和上下層溫差符合規(guī)范要求,但施工工期較長(zhǎng),不利于進(jìn)度控制;35cm和40cm的分層厚度在不同施工高程處的基礎(chǔ)溫差、內(nèi)外溫差和上下層溫差有一部分超出了規(guī)范要求;只有30cm的分層厚度在不同施工高程處的基礎(chǔ)溫差、內(nèi)外溫差和上下層溫差滿足規(guī)范要求,也有利于控制施工工期。(2)通過(guò)對(duì)各分層厚度第一主應(yīng)力的比較分析,可以得出,20cm和30cm的分層厚度在不同施工高程處的第一主應(yīng)力最大值都滿足規(guī)范要求;35cm和40cm的分層厚度下最大拉應(yīng)力超過(guò)了規(guī)范規(guī)定,可能產(chǎn)生裂縫。(3)通過(guò)對(duì)20cm、30cm、35cm及40cm四種分層施工厚度溫度應(yīng)力場(chǎng)的仿真分析,從滿足規(guī)范要求和工期控制方面來(lái)考慮,30cm的分層厚度為本工程的最優(yōu)分層厚度。
[Abstract]:The construction of roller compacted concrete is a fast and efficient dam construction technology. Because of adopting the construction method of earth-rock dam, the construction longitudinal joint of dam body section is cancelled, the storehouse surface is larger and the construction speed is faster; however, Because of the effect of cement hydration heat, mass concrete will increase in volume, slow heat dissipation and rapid rise in temperature when the longitudinal joint is cancelled, although the relevant temperature control measures have been taken in terms of design and materials. However, the temperature control of mass concrete construction is still a key issue in RCC construction. Thickening the layer thickness and reducing the number of layers can give full play to the rapid and high efficiency of roller compaction, but the layers of concrete dam are too thick, the concrete blocks are too large, the hydration heat release of cement is slow, and the temperature rises too fast. Because of the above reasons, the temperature stress of concrete dam may be too high, and even the temperature crack will appear. Therefore, under the premise of meeting the requirement of temperature control, increasing the delamination thickness of RCC is beneficial to improve the construction speed of RCC and shorten the construction period. It is an unavoidable problem in practical engineering to select appropriate thickness of RCC delamination. In this paper, the dam of Yongdingqiao Reservoir, a resettlement project of Pubugou Hydropower Station in Dadu River, Sichuan Province, is taken as the research object, and the finite element simulation analysis software ANSYS is used as the computing platform. This paper simulates the temperature field change of the whole construction process from the beginning to the completion of the dam section from the beginning to the completion of the construction. It synthetically takes into account the continuous changes in time and space of the external environment, the parameters of concrete material, the construction process and so on. The thermal analysis module and the structure analysis module in ANSYS are used to simulate the whole process of the temperature field and stress field change during the construction of Yongdingqiao Reservoir water retaining dam section during the construction period. According to the relevant documents and the experience of the built project, the whole process of the temperature field and the stress field change during the construction period of Yongdingqiao Reservoir is simulated. Four kinds of layered construction thickness of 20cm ~ (30) cm ~ (35 cm) and 40cm are selected for simulation and simulation. The results can be expressed as follows: (1) the temperature difference of 20cm's layered thickness at different construction elevation, through the simulation calculation of four different layering thickness of dam body concrete, The internal and external temperature difference and the upper and lower layer temperature difference meet the requirements of the code, but the construction period is longer, which is not conducive to the progress control of 35 cm and 40cm layer thickness in different construction elevation of the foundation temperature difference, some of the internal and external temperature difference and upper and lower layer temperature difference exceeded the requirements of the code; Only the layer thickness of 30cm can meet the requirements of the code at different height, and the difference of internal and external temperature and the temperature difference between upper and lower floors can also help to control the construction period. (2) through the comparison and analysis of the first principal stress of each layer thickness, It can be concluded that the maximum of the first principal stress of 20cm and 30cm layers at different construction elevations all meet the requirements of the code, and the maximum tensile stress under the delamination thickness of 35cm and 40cm exceeds the specifications. (3) through the simulation analysis of temperature stress field of 20cm ~ (30) cm ~ (30) cm ~ (-1) ~ (35) cm ~ (35) cm and 40cm, the optimum layering thickness of this project is considered from the aspects of meeting the requirements of specification and controlling time limit.
【學(xué)位授予單位】:華北水利水電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TV544.921
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 龍起煌;鄭治;;中國(guó)碾壓混凝土壩技術(shù)[J];水利水電技術(shù);2013年08期
2 王成磊;;淺析碾壓混凝土壩的發(fā)展趨勢(shì)[J];科技創(chuàng)新導(dǎo)報(bào);2010年19期
3 羅小剛;;淺談碾壓混凝土施工過(guò)程[J];中國(guó)高新技術(shù)企業(yè);2010年04期
4 張國(guó)新;;碾壓混凝土壩的溫度應(yīng)力與溫度控制[J];中國(guó)水利;2007年21期
5 張國(guó)新;;碾壓混凝土壩的溫度控制[J];水利水電技術(shù);2007年06期
6 唐欣薇;李鵬輝;張楚漢;;碾壓混凝土壩溫度場(chǎng)與應(yīng)力場(chǎng)全過(guò)程仿真分析[J];長(zhǎng)江科學(xué)院院報(bào);2007年03期
7 張松濤;李民;;ANSYS在分析混凝土結(jié)構(gòu)溫度場(chǎng)及溫度應(yīng)力中的應(yīng)用[J];中國(guó)水運(yùn)(理論版);2006年05期
8 劉海成,吳金國(guó),吳智敏,宋玉普;碾壓混凝土壩溫度應(yīng)力理論研究的進(jìn)展[J];人民長(zhǎng)江;2005年07期
9 梅錦煜,鄭桂斌;我國(guó)碾壓混凝土筑壩技術(shù)的新進(jìn)展[J];水力發(fā)電;2005年06期
10 劉數(shù)華,方坤河,何林;碾壓混凝土筑壩及材料新進(jìn)展[J];南水北調(diào)與水利科技;2004年05期
相關(guān)會(huì)議論文 前1條
1 李春敏;;我國(guó)碾壓混凝土拱壩發(fā)展概述[A];2004年全國(guó)碾壓混凝土壩筑壩技術(shù)交流會(huì)論文集[C];2004年
相關(guān)碩士學(xué)位論文 前4條
1 張澤眾;碾壓混凝土重力壩施工期溫控措施及溫度應(yīng)力優(yōu)化研究[D];西北農(nóng)林科技大學(xué);2015年
2 劉智;碾壓混凝土拱壩有限元仿真分析及防裂措施[D];南昌大學(xué);2012年
3 劉學(xué)昆;考慮多場(chǎng)耦合的碾壓混凝土壩溫度及應(yīng)力數(shù)值模擬研究[D];天津大學(xué);2012年
4 郭華箏;地基土約束下大體積混凝土底板的溫度裂縫研究[D];長(zhǎng)安大學(xué);2010年
,本文編號(hào):2103797
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2103797.html