溫度分層水庫(kù)下泄水溫研究
本文選題:溫度分層水庫(kù) + 分層取水。 參考:《天津大學(xué)》2014年博士論文
【摘要】:高壩大庫(kù)的修建形成了大面積的停滯水域,加之太陽(yáng)輻射以及其他理化作用,水庫(kù)內(nèi)水溫沿水深呈明顯的季節(jié)性分層分布。傳統(tǒng)底層取水的下泄水溫較低,會(huì)對(duì)下游水生生物的生長(zhǎng)和繁殖造成危害,并產(chǎn)生水庫(kù)放流濁水長(zhǎng)期化等問(wèn)題。因此,如何有效的提高水庫(kù)下泄水溫,減免下泄低溫水帶來(lái)的生態(tài)環(huán)境影響已經(jīng)成為人們?nèi)找骊P(guān)注的問(wèn)題和學(xué)者研究的焦點(diǎn)。分層取水措施可以提高下泄水溫,進(jìn)而有效緩解低溫水對(duì)下游生態(tài)環(huán)境帶來(lái)的負(fù)面影響,因此被越來(lái)越多的應(yīng)用于大型水利工程中。常見(jiàn)的分層取水措施有很多種,如側(cè)式孔流型取水口、溢流式疊梁門(mén)取水口、浮式管型取水口和控制幕取水等。 本文的主要工作分為三部分:第一部分為下泄水溫模型試驗(yàn)相似理論的介紹、擴(kuò)展及相應(yīng)溫度分布轉(zhuǎn)化理論的提出。第二部分為利用試驗(yàn)手段,針對(duì)側(cè)式孔流型取水口和浮式管型取水口進(jìn)行了下泄水溫研究,試驗(yàn)選用多種水溫分布、取水口淹沒(méi)深度以及下泄流量,通過(guò)大量試驗(yàn)成果,分析下泄水溫的變化規(guī)律和影響因素。第三部分為利用PIV系統(tǒng),針對(duì)側(cè)式孔流型取水口的流場(chǎng)進(jìn)行初步研究。本文主要研究?jī)?nèi)容及成果如下: (1)介紹了水庫(kù)水溫分層的形成機(jī)理、低溫下泄水的影響、減免下泄低溫水影響的相應(yīng)措施以及常見(jiàn)的分層取水形式。對(duì)水庫(kù)水溫結(jié)構(gòu)判別、水庫(kù)水溫的預(yù)測(cè)和模擬方法進(jìn)行了歸納。從數(shù)值模擬研究和試驗(yàn)研究?jī)蓚(gè)方面總結(jié)了分層取水的研究成果。 (2)對(duì)現(xiàn)有水庫(kù)分層取水水溫模型試驗(yàn)相似理論進(jìn)行了擴(kuò)展,增加了新的模型相似條件。結(jié)合實(shí)際操作中遇到的問(wèn)題,提出了模型與原型底層基礎(chǔ)水溫不同時(shí),模型滿足相似條件所需要進(jìn)行的水溫分布轉(zhuǎn)化方法,并對(duì)轉(zhuǎn)化后的原型模型下泄水溫?fù)Q算公式進(jìn)行了推導(dǎo)。 (3)結(jié)合水溫模型試驗(yàn)相似理論,建立了相應(yīng)的模型,利用試驗(yàn)方法,對(duì)側(cè)式孔流型取水口和浮式管型取水口的下泄水溫進(jìn)行研究。試驗(yàn)以某水庫(kù)三個(gè)典型月份水溫分布資料為背景,選取多種淹沒(méi)深度取水口結(jié)合多種下泄流量的組合工況進(jìn)行研究。結(jié)合試驗(yàn)成果,分析水庫(kù)水溫分層對(duì)取水的影響,探討分層取水的取水范圍,研究水溫分布、取水口淹沒(méi)深度以及下泄流量對(duì)下泄水溫的影響,比較兩種不同類型取水口的取水特點(diǎn),總結(jié)下泄水溫變化規(guī)律,提出了側(cè)式孔流型取水口下泄水溫預(yù)測(cè)公式。 (4)針對(duì)側(cè)式孔流型取水口,采用PIV系統(tǒng)對(duì)溫度分層條件下取水口附近的流場(chǎng)進(jìn)行了初步研究。對(duì)水溫分層是否會(huì)引起水庫(kù)內(nèi)的流場(chǎng)變化進(jìn)行了判斷,分析了側(cè)式孔流型取水口附近水體的流動(dòng)規(guī)律,,總結(jié)了側(cè)式孔流型取水口的取水特點(diǎn)。
[Abstract]:With the construction of the large reservoir of high dam, a large area of stagnant water area is formed, together with the solar radiation and other physicochemical effects, the water temperature in the reservoir is obviously distributed in seasonal stratification along the water depth. The lower water temperature of the traditional bottom water will harm the growth and reproduction of aquatic organisms in the lower reaches, and cause problems such as the long-term development of the reservoir discharge turbidity water and so on. Therefore, how to effectively improve the reservoir drainage temperature, reduce the impact of low-temperature water drainage ecological environment has become a growing concern and the focus of scholars. Stratified water intake measures can increase the temperature of water discharge, and then effectively alleviate the negative impact of low temperature water on the ecological environment downstream, so it is more and more used in large-scale water conservancy projects. There are many kinds of stratified water intake measures, such as side orifice, overflow beam gate, floating pipe and control screen, etc. The main work of this paper is divided into three parts: the first part is the introduction of the similarity theory of the model test, the extension and the theory of the corresponding temperature distribution transformation. The second part is to use the test method to study the outlet temperature of the side orifice and the floating pipe. A variety of distribution of water temperature, submerged depth of the intake and discharge of the outlet are selected in the experiment, and a large number of experimental results are obtained. The variation law and influencing factors of the temperature of the downdraining water are analyzed. In the third part, the flow field of the side orifice is studied by using PIV system. The main contents and achievements of this paper are as follows: (1) the formation mechanism of reservoir water temperature stratification, the influence of low temperature water discharge, the corresponding measures of reducing and reducing the influence of low temperature drain water and the common layering water intake form are introduced. The structure of reservoir water temperature, the prediction and simulation methods of reservoir water temperature are summarized. The research results of stratified water intake are summarized from two aspects of numerical simulation and experimental research. (2) the similarity theory of model test for stratified water intake temperature of existing reservoirs is extended and a new model similarity condition is added. According to the problems encountered in practical operation, the method of water temperature distribution transformation is proposed, which is different from the model and prototype bottom water temperature, and the model meets the similar conditions. The conversion formula of the converted prototype model is deduced. (3) combined with the similarity theory of water temperature model test, the corresponding model is established, and the test method is used. The downdraining temperature of lateral orifice and floating pipe is studied. Based on the data of water temperature distribution in three typical months of a reservoir, the combined working conditions of various submergence depth intake and discharge are selected. Based on the experimental results, the influence of water temperature stratification on water intake is analyzed, and the range of water intake by stratification is discussed. The distribution of water temperature, the depth of water intake submerged and the effect of discharge on the water discharge temperature are studied. This paper compares the characteristics of two different types of water intake, sums up the variation law of outlet temperature, and puts forward a formula for predicting the outlet temperature of side orifice. (4) aiming at the side orifice, The PIV system is used to study the flow field near the water intake under the condition of temperature stratification. Whether the stratification of water temperature will cause the change of the flow field in the reservoir is judged, the flow law of the water body near the side orifice is analyzed, and the characteristics of the water intake of the side orifice are summarized.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TV697.21
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 張士杰;劉昌明;王紅瑞;李國(guó)強(qiáng);譚紅武;;水庫(kù)水溫研究現(xiàn)狀及發(fā)展趨勢(shì)[J];北京師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年03期
2 郝紅升;李克鋒;李然;趙再興;;取水口高程對(duì)過(guò)渡型水庫(kù)水溫分布結(jié)構(gòu)的影響[J];長(zhǎng)江流域資源與環(huán)境;2007年01期
3 錢(qián)小蓉,廖紅,顧恒岳,薛聯(lián)芳;水庫(kù)水溫預(yù)測(cè)模型研究[J];重慶大學(xué)學(xué)報(bào)(自然科學(xué)版);1997年03期
4 高學(xué)平;陳弘;宋慧芳;;水電站疊梁門(mén)多層取水下泄水溫公式[J];中國(guó)工程科學(xué);2011年12期
5 李劍明;;分層取水技術(shù)改造在清涼山水庫(kù)的應(yīng)用[J];廣東水利水電;2008年03期
6 ;Research on the multi-level intake water temperature effect of the Yalong River Jinping-I hydropower project[J];Science China(Technological Sciences);2011年S1期
7 周徐斌;馬捷;;基于相似理論的海洋溫躍層模擬水池研究[J];中國(guó)艦船研究;2012年06期
相關(guān)博士學(xué)位論文 前1條
1 張少雄;大型水庫(kù)分層取水下泄水溫研究[D];天津大學(xué);2012年
本文編號(hào):2102192
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2102192.html