應對徑流變異的漢江上游梯級水庫調(diào)度研究
本文選題:徑流變異 + 漢江上游流域; 參考:《西安理工大學》2017年碩士論文
【摘要】:水庫調(diào)度規(guī)則是基于水庫設計階段的水文資料序列模擬計算獲得的,由于全球氣候變化和人類活動影響,流域下墊面條件發(fā)生變化,徑流系列發(fā)生了變異。水庫設計階段制定的調(diào)度規(guī)則已不適用于新的水文序列,因此,為應對徑流變異對水庫調(diào)度的影響,研究新水文序列下的水庫調(diào)度規(guī)則十分必要。本文針對漢江上游石泉-喜河-安康梯級水庫,研究了應對徑流規(guī)律改變后梯級水庫的調(diào)度規(guī)則。論文主要研究內(nèi)容及研究成果如下:(1)分析了漢江上游徑流規(guī)律,利用小波分析得出石泉入庫徑流具有6年和23年的周期,安康入庫徑流具有7年、17年和26年的周期;通過Kendall秩次檢驗法得出石泉、安康徑流呈遞減趨勢;運用R/S分析法得出石泉、安康徑流序列具有持續(xù)性。(2)對漢江上游徑流過程進行了變異診斷,運用滑動t檢驗法、山本法、Mann-Kendall法、Pettitt法、有序聚類分析法、西沃茲信息準則法等綜合分析得出,漢江上游徑流序列在1990年出現(xiàn)突變點。變異后流域年徑流量減少,減少時段主要集中在汛期。變異后5~10月,石泉、安康水庫入庫徑流分別減少39.20%和30.80%,年內(nèi)占比分別由80.94%和80.32%下降至77.25%和77.45%。趨勢性則由不顯著遞增轉(zhuǎn)變?yōu)椴伙@著遞減。(3)利用石泉、安康水庫原始調(diào)度圖模擬調(diào)度漢江上游梯級水庫,得出1954年~1990年石泉、喜河、安康多年平均發(fā)電量分別為7.59、6.06及25.10億kW·h; 1990年~2005年石泉、喜河、安康多年平均發(fā)電量分別為5.66、4.57及18.35億kW-h。(4)制定了徑流規(guī)律變化后的改進水庫調(diào)度圖。采用等出力方法得到新調(diào)度圖并運用其進行模擬調(diào)度,得到石泉、喜河、安康水電站多年平均發(fā)電量分別為5.69、4.57和18.46億kW·h,新調(diào)度圖相對原調(diào)度圖可提高梯級水庫的發(fā)電效益。(5)制定了徑流規(guī)律變化后的優(yōu)化水庫調(diào)度圖。以變異后徑流序列制定的新調(diào)度圖為初始值,建立優(yōu)化模型,通過模擬遺傳混合算法得到漢江上游梯級水庫聯(lián)合優(yōu)化調(diào)度圖,并運用其進行模擬調(diào)度,石泉、喜河、安康水電站多年平均發(fā)電量分別為5.83、4.62和18.59億kW·h,可進一步提高梯級水庫發(fā)電效益。
[Abstract]:The regulation of reservoir operation is based on the simulation of hydrological data in the reservoir design stage. Because of global climate change and human activities, the underlying surface conditions of the basin have changed and the runoff series have changed. In order to deal with the influence of runoff variation on reservoir operation, it is necessary to study the reservoir operation rules under the new hydrological sequence. Aiming at the Shi Quan-Xi-Ankang cascade reservoirs in the upper reaches of the Hanjiang River, the regulation of cascade reservoirs after the change of runoff rules is studied in this paper. The main research contents and results are as follows: (1) the regularity of runoff in the upper reaches of the Hanjiang River is analyzed. The results of wavelet analysis show that the period of Shi Quan inflow is 6 years and 23 years, and the period of Ankang inflow is 7 years, 17 years and 26 years. By using Kendall rank test method, Shi Quan and Ankang runoff are found to be decreasing, and Shi Quan and Ankang runoff series are obtained by R- / S method. (2) the variation diagnosis of runoff process in the upper reaches of Hanjiang River is carried out, and the sliding t test method is used. The Mann-Kendall method, Pettitt method, ordered cluster analysis method and Sivoz information criterion method show that the runoff sequence in the upper reaches of the Hanjiang River appeared abrupt point in 1990. After variation, the annual runoff decreased, and the decrease period was mainly concentrated in flood season. During the period from May to October, the runoff of Shi Quan and Ankang reservoir decreased by 39.20% and 30.80%, respectively, and the percentage of runoff decreased from 80.94% and 80.32% to 77.25% and 77.45% respectively. (3) by using Shi Quan, the original dispatching diagram of Ankang Reservoir is used to simulate the operation of cascade reservoirs in the upper reaches of the Hanjiang River, and it is concluded that from 1954 to 1990, the Shi Quan, the Xi River, were obtained. The average annual power generation of Ankang is 7.59 kW / h and 2.51 billion kW / h respectively, and that of Shi Quan, Xihe and Ankang from 1990 to 2005 is 5.6kW / h and 1.835 billion kW / h respectively. (4) the improved reservoir operation map has been drawn up after the change of runoff regularity. The new scheduling diagram is obtained by using the equal force method and simulated scheduling is carried out by using it. The Shi Quan and Xihe River are obtained. The annual average power generation of Ankang Hydropower Station is 5.69 ~ 4.57 and 1.846 billion kW / h respectively. Compared with the original operation chart, the new dispatching chart can improve the power generation benefit of cascade reservoirs. (5) the optimized reservoir operation diagram after the change of runoff law is made. Based on the new regulation chart of the runoff sequence after variation as initial value, the optimization model is established, and the joint optimal dispatching diagram of cascade reservoirs in the upper reaches of the Hanjiang River is obtained by simulated genetic hybrid algorithm, and is used to simulate the operation, Shi Quan, Xihe, Xihe, Xihe, Xihe, Xihe, Xihe, Xihe. The annual average power generation of Ankang Hydropower Station is 5.83 KW 4.62 and 1.859 billion kW / h respectively, which can further improve the power generation efficiency of cascade reservoirs.
【學位授予單位】:西安理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TV697.1
【參考文獻】
相關期刊論文 前10條
1 嚴棟飛;解建倉;姜仁貴;吳昊;李楊;;漢江上游徑流變化趨勢及特征分析[J];水資源與水工程學報;2016年06期
2 黃強;孔波;樊晶晶;;水文要素變異綜合診斷[J];人民黃河;2016年10期
3 丁琨;熊珊珊;張禮兵;金菊良;周玉良;吳成國;;氣候變化條件下大型灌區(qū)小水電群優(yōu)化運行研究[J];水力發(fā)電學報;2015年07期
4 桑燕芳;王中根;劉昌明;;小波分析方法在水文學研究中的應用現(xiàn)狀及展望[J];地理科學進展;2013年09期
5 劉攀;張文選;李天元;;考慮發(fā)電風險率的水庫優(yōu)化調(diào)度圖編制[J];水力發(fā)電學報;2013年04期
6 李峰平;章光新;董李勤;;氣候變化對水循環(huán)與水資源的影響研究綜述[J];地理科學;2013年04期
7 王旭;雷曉輝;蔣云鐘;王浩;;基于可行空間搜索遺傳算法的水庫調(diào)度圖優(yōu)化[J];水利學報;2013年01期
8 張殷欽;胡偉;劉俊民;;基于R/S分析法的地下水位動態(tài)變化趨勢分析[J];中南大學學報(自然科學版);2012年12期
9 張忠波;張雙虎;蔣云鐘;王浩;;改進的遺傳算法在水庫調(diào)度中的應用[J];人民黃河;2012年08期
10 溫進化;陸列寰;何江波;鄭積花;;基于遺傳算法的梯級水庫優(yōu)化調(diào)度圖研究[J];安徽農(nóng)業(yè)科學;2011年31期
相關碩士學位論文 前2條
1 李靖;河川徑流特征及影響因素分析研究[D];太原理工大學;2015年
2 左吉昌;水庫優(yōu)化調(diào)度函數(shù)研究[D];華中科技大學;2007年
,本文編號:2086835
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2086835.html