相同尺寸管道雙車在不同車間距下形成的縫隙流水力特性研究
發(fā)布時間:2018-06-24 20:43
本文選題:流量 + 間距 ; 參考:《太原理工大學》2014年碩士論文
【摘要】:隨著科技和現代社會的飛速發(fā)展,我國的經濟規(guī)模不斷擴大,國民環(huán)保意識也隨之不斷增強。傳統(tǒng)的交通運輸方式—公路運輸、鐵路運輸、水路運輸和航空運輸,已經不能滿足現代社會的發(fā)展需求,而筒裝料管道水力輸送技術作為一種新型的節(jié)能環(huán)保的運輸方式,是對現有交通運輸方式的一種補充和完善,具有廣闊的發(fā)展前景。本文結合國家自然科學基金項目“管道縫隙螺旋流水力特性研究(51109115)”和“管道列車水力輸送能耗研究(51179116)”,采用理論分析和模型試驗相結合的方法,在不同間距條件下,對管道雙車的縫隙流進行分析研究及其水力損失進行了分析研究。得出主要結論如下: 1、流量相同間距變化時,在管道后車測試斷面和管道前車測試斷面,軸向流速分布具有以下特點:軸向流速隨著測點距離管道中心距離的增大呈現先增后減,且隨著間距增大,軸向流速梯度趨于穩(wěn)定。同時,可以看出間距為50cm時軸向速度比間距為20cm和間距為80cm的軸向速度小。 2、流量相同間距變化時,在管道后車和前車測試斷面,徑向流速分布具有以下特點:間距為80cm時最為均勻,間距為50cm時次之,而間距為20cm時最不均勻隨著間距的變化,徑向流速分布密集區(qū)域基本一致,但是間距越大,密集區(qū)域越不明顯。 3、流量相同間距變化時,在管道后車和前車測試斷面,周向流速分布具有以下特點:間距為20cm下前車、后車周向速度分布最為均勻,流速梯度最小,間距為50cm的次之,間距為80cm時最不均勻,流速梯度最大?拷艿纼缺诤凸艿儡囃獗诘臏y點周向流速變化較大,不僅大小改變,方向也變化較大。隨著間距的增大,前后車之間的影響越來越小。 4、流量相同間距變化時,車間斷面的軸向流速分布有如下規(guī)律:間距為80cm時軸向流速分布,比間距為50cm和20cm時更為均勻,而間距為50cm和80cm時的管道前車斷面軸向流速分布類似,間距為20cm時管道雙車車間環(huán)隙軸向流速分布最不均勻,且與其他兩個間距的分布相比有較大差異。同時,可以看出間距為50cm時軸向速度比間距為20cm和間距為80cm的軸向速度小。 5、流量相同間距變化時,車間斷面的徑向向流速分布有如下規(guī)律:徑向流速分布密集區(qū)域基本趨于一致,徑向流速分布隨著間距的增大,有先密集后趨于稀疏的分布特征。 6、流量相同間距變化時,車間斷面的周向流速分布有如下規(guī)律:間距為20cm下的雙車車間環(huán)隙斷面周向速度分布最為均勻,流速梯度最小,間距為50cm的次之,間距為80cm最不均勻,流速梯度最大。隨著間距的增大,雙車車間環(huán)隙斷面周向流速分布的密集區(qū)域越來越明顯。 7、相同流量下測試段內軸向速度的沿程分布圖可以看出,對流量不同情況下,軸向速度在測試段內的變化基本可以分為4個階段;從三個間距的速度沿程分布可以看出,雙車之間相互影響的范圍在35cm-50cm之間:間距過小,雙車相互影響,導致軸向速度發(fā)生變化較大,周向和徑向速度影響較大,導致能耗增加;間距過大,雙車之間相互影響小,但是不經濟且不利于實際運用。因此從這點考慮雙車運行的最佳間距應在35cm-50cm之間。 8、在不同間距、不同流量的條件下,管道水流在測試段內水力損失變化趨勢是一致的,即隨著距離的增加,水力損失也不斷的增加。在間距相同的情況下,流量越大,測試段內水流的水力損失也越大;管道水流經過第一個管道車時的水力損失小于管道水流經過第二個管道車時的水力損失。 9、當流量相同的情況下,間距不同,管道水流經過管道車時水力損失,隨間距的增加先減小后增加,在本文中,間距為50cm時,水力損失最小,水力損失增幅亦最小;當間距為80cm時,水力損失最大,且水力損失增幅也最大。 本文的研究成果,對筒裝料管道水力輸送技術的發(fā)展,具有重要的參考價值,為該技術的后續(xù)研究提供了寶貴的試驗依據,也為提高輸送效率、使其盡快實現工業(yè)化,提供了重要的理論依據。
[Abstract]:With the rapid development of science and technology and modern society , our country ' s economic scale is constantly expanding , and the consciousness of national environmental protection has been strengthened . Traditional modes of transportation - road transportation , railway transportation , waterway transportation and air transportation have not satisfied the development demands of modern society .
1 . At the same time , the axial flow velocity distribution has the following characteristics : axial flow velocity increases first and then decreases with the increase of the distance of the distance between the measuring point and the pipeline , and the axial velocity gradient tends to be stable as the distance increases . At the same time , it can be seen that the axial velocity is 20 cm and the axial velocity with the spacing of 80 cm is small as the spacing is 50 cm .
2 . The radial flow velocity distribution has the following characteristics : the spacing is 80 cm , the distance is 50 cm and the distance is 50 cm , and the distance is 20 cm . The radial flow velocity distribution is basically consistent with the change of spacing , but the larger the spacing , the less dense the dense area .
3 . When the flow rate is the same as that of the front vehicle , the distribution of the circumferential velocity of the front and rear vehicles has the following characteristics : the spacing is 20 cm , the velocity distribution is the most uniform , the velocity gradient is the smallest , the distance is 50 cm , the distance is 80 cm , the velocity gradient is the largest , and the velocity gradient is the biggest . The change of the velocity is not only the change of the size , but also the direction change . With the increase of the distance , the influence between the front and rear vehicles is smaller and smaller .
4 . At the same time , the axial velocity distribution of the cross section of the pipe is more uniform when the spacing is 80 cm , the axial velocity distribution is more uniform when the spacing is 50 cm and 20 cm , and the axial velocity distribution of the axial velocity of the pipe is not uniform when the spacing is 50 cm and 80 cm .
5 . The radial flow velocity distribution of the cross section of the workshop has the following rule : the radial flow velocity distribution is basically the same as that of the dense area , and the radial flow velocity distribution tends to be sparse with the increase of the spacing .
6 . At the same interval of flow , the circumferential velocity distribution of the cross section of the workshop has the following rule : the circumferential velocity distribution of the ring - gap section of the double - car workshop with the spacing of 20cm is the most uniform , the gradient of the flow velocity is the smallest , the spacing is 50 cm , the spacing is 80cm and the maximum velocity gradient is the maximum . As the distance increases , the dense area of the circumferential velocity distribution of the annular gap section of the double - vehicle workshop becomes more and more obvious .
7 . It can be seen that the change of axial velocity in the test section can be divided into 4 stages under different flow conditions .
It can be seen from the velocity distribution of three intervals that the mutual influence between the two vehicles ranges from 35 cm to 50 cm : the spacing is too small , the two vehicles interact with each other , resulting in a large change in the axial velocity , a large influence on the circumferential direction and radial velocity , which leads to an increase in energy consumption ;
The spacing is too large and the interaction between the two vehicles is small , but it is not economical and is not conducive to practical use . Therefore , the optimal spacing between the two vehicles should be between 35 cm and 50 cm in view of this point .
8 . Under the condition of different spacing and different flow , the change trend of hydraulic loss in the test section is consistent , that is , with the increase of distance , the hydraulic loss increases continuously . Under the same distance , the greater the flow rate , the greater the hydraulic loss of the water flow in the test section ;
The hydraulic loss when the pipe flow passes through the first pipe car is less than the hydraulic loss when the pipe water flows through the second pipeline vehicle .
9 . When the flow rate is the same , the distance is different , the hydraulic loss is decreased with the increase of the distance , the hydraulic loss is the least when the distance is 50 cm , and the increase of hydraulic loss is also the minimum .
When the spacing is 80cm , the hydraulic loss is the biggest , and the increase of hydraulic loss is also the biggest .
The research results of this paper have important reference value for the development of the hydraulic transport technology of the tube charging pipeline , which provides valuable experimental basis for the follow - up study of the technology , and also provides an important theoretical basis for improving the conveying efficiency and realizing industrialization as soon as possible .
【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:U171;TV134
【參考文獻】
相關期刊論文 前10條
1 李炎炎;張耀平;姚應峰;;真空管道運輸系統(tǒng)管道模型結構分析與實驗內容[J];河北交通科技;2008年01期
2 林愉;煤柱在煤漿管道中輸送的運動特征[J];化工礦物與加工;1999年01期
3 許賢良,朱兵,張軍,王傳禮;同心環(huán)形縫隙流理論研究[J];安徽理工大學學報(自然科學版);2004年03期
4 傅旭東,王光謙,董曾南;低濃度固液兩相流理論分析與管流數值計算[J];中國科學E輯:技術科學;2001年06期
5 林愉;水平輸送管道內圓柱狀型料的懸浮機理[J];金屬礦山;1999年10期
6 林愉;礦漿管道輸送尾砂型料的構思與設計[J];金屬礦山;2000年10期
7 鄒偉生,吳桂鳳,黃家禎;長距離漿體管道輸送管壁磨蝕研究[J];礦冶工程;2004年02期
8 白曉寧,胡壽根;漿體管道的阻力特性及其影響因素分析[J];流體機械;2000年11期
9 林愉,王福吉;型料輸送管道實驗系統(tǒng)的設計研究[J];流體機械;2000年12期
10 林愉,楊慶煊,唐軍;煤漿管道水頭損失與煤顆粒ζ電位關系的研究[J];煤炭科學技術;2005年03期
,本文編號:2062873
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2062873.html