后導(dǎo)葉片葉掃掠對軸流泵性能的影響
本文選題:軸流泵 + 導(dǎo)葉 ; 參考:《揚(yáng)州大學(xué)》2016年碩士論文
【摘要】:后置導(dǎo)葉是軸流泵中重要的能量回收部件。通過后導(dǎo)葉回收葉輪出口速度環(huán)量,將動能轉(zhuǎn)換為壓能,不僅可以減小流道水力損失,提高泵及泵裝置的水力效率,還有利于泵站的穩(wěn)定運(yùn)行,因此,對導(dǎo)葉的優(yōu)化設(shè)計研究具有重要的學(xué)術(shù)意義和工程應(yīng)用價值。本文采用CFD數(shù)值模擬的方法研究后導(dǎo)葉葉片掃掠不同角度下對軸流泵性能的影響。以減少導(dǎo)葉進(jìn)、出口及導(dǎo)葉背部的脫流,提高導(dǎo)葉體的環(huán)量回收能力為目的,總共進(jìn)行了六個不同的掃掠方案的導(dǎo)葉設(shè)計。通過將導(dǎo)葉片各翼型斷面三維坐標(biāo)值整體順時針或逆時針旋轉(zhuǎn)一定的角度,得到不同掃掠角度下的導(dǎo)葉葉片,采用標(biāo)準(zhǔn)k-s湍流模型對六種導(dǎo)葉掃掠方案對應(yīng)的軸流泵段各進(jìn)行8個流量工況下的定常和非定常的數(shù)值模擬計算和比較分析。同時為了進(jìn)一步研究+16°導(dǎo)葉對軸流泵內(nèi)部水壓力脈動的影響,在葉輪進(jìn)口、葉輪與導(dǎo)葉間、導(dǎo)葉間及導(dǎo)葉出口四個斷面上布置20個監(jiān)測點進(jìn)行了壓力脈動的監(jiān)測。首先,對所有監(jiān)測點在最優(yōu)工況下進(jìn)行了監(jiān)測,然后又采用三個不同的流量工況下對各斷面上中間的監(jiān)測點進(jìn)行壓力脈動監(jiān)測,得到各監(jiān)測點壓力脈動的時域特性,并經(jīng)過FFT變換得到頻域特性。通過分析比較可知導(dǎo)葉葉片向前掃掠比向后掃掠的效率要高,并且在+16°導(dǎo)葉的軸流泵段效率達(dá)到最高,通過模型試驗,驗證了數(shù)值模擬的可靠性。對+16°導(dǎo)葉數(shù)值模擬內(nèi)部流場分析可知,導(dǎo)葉前掠比0°導(dǎo)葉可以更好的減小導(dǎo)葉的脫流情況,尤其在靠近導(dǎo)葉出口輪轂處,能更好的回收速度環(huán)量。壓力脈動非定常分析可知:不管0°導(dǎo)葉還是+16°導(dǎo)葉,所有監(jiān)測點的壓力脈動頻率主要以葉頻為主,從輪轂到輪緣的壓力脈動幅值,葉輪前是逐漸增大,葉輪與導(dǎo)葉之間、導(dǎo)葉間是先減小后增大,導(dǎo)葉后是先增大后減小,總體上所有監(jiān)測點在+16°導(dǎo)葉的壓力脈動幅值比0°導(dǎo)葉要小,其中在導(dǎo)葉間和導(dǎo)葉出口處壓力脈動幅值平均要小40%左右:大流量工況和最優(yōu)流量工況下,0°導(dǎo)葉除了在導(dǎo)葉出口處監(jiān)測點壓力脈動頻率主要以轉(zhuǎn)頻為主外,其他的壓力脈動頻率主要以葉頻為主,而+16°導(dǎo)葉各監(jiān)測點壓力脈動頻率主要以葉頻為主;小流量工況下,在導(dǎo)葉間、導(dǎo)葉出口的監(jiān)測點壓力脈動頻率以轉(zhuǎn)頻為主,而0°導(dǎo)葉受渦流二次波的影響比+16°導(dǎo)葉要大很多。因此,導(dǎo)葉葉片向前掃掠比導(dǎo)葉葉片向后掃掠性能要好,尤其在+16°時泵段性能達(dá)到最佳,+16°導(dǎo)葉在提高泵段性能的同時還能改善靠近導(dǎo)葉出口輪轂處水流流態(tài),回收速度環(huán)量,減小泵段內(nèi)的水壓力脈動,尤其是在最優(yōu)工況或者大流量工況達(dá)到最佳。
[Abstract]:Rear guide vane is an important energy recovery component in axial flow pump. Using the back guide vane to recover the velocity loop of impeller outlet and convert kinetic energy into pressure energy can not only reduce the hydraulic loss of flow channel and improve the hydraulic efficiency of pump and pump device, but also benefit the steady operation of pump station. It has important academic significance and engineering application value to study the optimum design of guide vane. In this paper, CFD numerical simulation method is used to study the influence of swept vane on the performance of axial flow pump at different angles. In order to reduce the deflow in and out of the guide vane and the back of the guide vane, and to improve the annular recovery capacity of the guide vane body, six different sweep schemes were carried out for the guide vane design. The guide vane with different sweep angles is obtained by rotating the three dimensional coordinate values of each airfoil section clockwise or counterclockwise. The standard k-s turbulence model is used to simulate and compare the steady and unsteady flow conditions of the axial flow pump sections corresponding to six guide vane sweep schemes. In order to further study the influence of 16 擄guide vane on water pressure pulsation in axial flow pump, 20 monitoring points were arranged on four sections of impeller inlet, impeller and guide vane, guide vane and guide vane outlet. Firstly, all the monitoring points are monitored under the optimal working conditions, and then the pressure pulsation of the monitoring points in the middle of each section is monitored under three different flow conditions, and the time-domain characteristics of the pressure pulsation at each monitoring point are obtained. The characteristic of frequency domain is obtained by FFT transform. Through analysis and comparison, it can be seen that the efficiency of the guide vane is higher than that of backward sweep, and the efficiency of the axial flow pump section of the 16 擄guide vane is the highest. The reliability of the numerical simulation is verified by the model test. The numerical simulation of the flow field of the 16 擄guide vane shows that the guide vane forward sweep is better than the 0 擄guide vane in reducing the decurrent of the guide vane, especially near the hub of the outlet of the guide vane, which can recover the velocity loop better. The unsteady analysis of pressure pulsation shows that the frequency of pressure pulsation is mainly blade frequency at all monitoring points, regardless of the 0 擄guide vane or 16 擄guide vane, and the amplitude of pressure fluctuation from hub to rim increases gradually in front of impeller, between impeller and guide vane. The pressure fluctuation amplitude of all monitoring points at 16 擄guide vane is smaller than that of 0 擄guide vane. The amplitude of pressure pulsation between the guide vane and at the outlet of the guide vane is about 40% smaller on average. Under the condition of large flow rate and optimal flow condition, the pressure pulsation frequency of 0 擄guide vane is mainly rotating frequency, except for the pressure fluctuation frequency at the monitoring point at the outlet of the guide vane. The other pressure pulsation frequencies are mainly blade frequency, while 16 擄guide vane pressure pulsation frequency is mainly blade frequency, under small flow condition, the pressure pulsation frequency of the monitoring point at the outlet of the guide vane is mainly turn frequency under the condition of small flow rate. The influence of secondary eddy current waves on 0 擄guide vane is much greater than that on 16 擄guide vane. Therefore, the sweep performance of the guide vane is better than the backward sweep performance of the guide vane, especially the optimum performance of the pump section at 16 擄. The 16 擄guide vane not only improves the performance of the pump section, but also improves the water flow state near the hub of the outlet wheel of the guide vane. The speed loop is recovered to reduce the water pressure pulsation in the pump section, especially in the optimal working condition or the large flow condition.
【學(xué)位授予單位】:揚(yáng)州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TV675;TV136.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉凱;桂林;胡彬;;混流式水輪機(jī)導(dǎo)水機(jī)構(gòu)內(nèi)水流流態(tài)數(shù)值模擬[J];西南民族大學(xué)學(xué)報(自然科學(xué)版);2012年05期
2 梁賢光,孫培亞,王偉,蔣念東;往復(fù)流中雙向?qū)~沖動透平模型性能試驗研究[J];海洋工程;2001年04期
3 蔣敦軍;李仁年;龔朝暉;;雙流道水力透平的導(dǎo)葉優(yōu)化研究[J];西華大學(xué)學(xué)報(自然科學(xué)版);2012年05期
4 張學(xué)靜;李德明;;多級導(dǎo)葉式離心泵導(dǎo)葉內(nèi)部CFD計算分析[J];甘肅科學(xué)學(xué)報;2006年03期
5 胡健;黃勝;王培生;;加導(dǎo)葉軸流泵水動力特性研究[J];水力發(fā)電學(xué)報;2008年01期
6 肖玉紅;;混流式水輪機(jī)蝸殼·導(dǎo)葉及轉(zhuǎn)輪內(nèi)部水流的二維與三維數(shù)值模擬比較分析[J];安徽農(nóng)業(yè)科學(xué);2011年28期
7 柳蔭中;;水力發(fā)電廠導(dǎo)葉軸修復(fù)[J];河南科技;2010年24期
8 羅欣;鄭源;馮俊;;基于CFD的軸流泵后置導(dǎo)葉水力性能分析[J];水電能源科學(xué);2014年03期
9 樊紅剛;崔赫辰;陳乃祥;;導(dǎo)葉關(guān)閉規(guī)律非線性評價函數(shù)及多工況優(yōu)化[J];排灌機(jī)械工程學(xué)報;2013年03期
10 胡澤明,陳學(xué)純;離心泵導(dǎo)葉擴(kuò)散段內(nèi)湍流計算[J];石油大學(xué)學(xué)報(自然科學(xué)版);1993年03期
相關(guān)會議論文 前10條
1 李文鋒;羅興,
本文編號:2048397
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2048397.html