水泵水輪機(jī)MGV裝置協(xié)聯(lián)及性能研究
本文選題:水泵水輪機(jī) + 預(yù)開導(dǎo)葉; 參考:《蘭州理工大學(xué)》2017年碩士論文
【摘要】:隨著抽水蓄能電站的裝機(jī)容量增加,對(duì)電站的核心部件水泵水輪機(jī)穩(wěn)定運(yùn)行提出了更高的要求。但機(jī)組在啟動(dòng)、甩負(fù)荷等一些過(guò)渡過(guò)程中易進(jìn)入“S”曲線特性區(qū)域,機(jī)組在此區(qū)域中運(yùn)行狀態(tài)很不平穩(wěn),易造成并網(wǎng)困難。雖現(xiàn)階段多使用增設(shè)MGV裝置(misaligned guide vanes,非同步導(dǎo)葉裝置)改善機(jī)組“S”特性,但在機(jī)組過(guò)渡過(guò)程中同步導(dǎo)葉與非同步導(dǎo)葉未能協(xié)聯(lián),致使其機(jī)組振動(dòng)增加,運(yùn)行穩(wěn)定性降低。因此,本文通過(guò)對(duì)水泵水輪機(jī)內(nèi)部流場(chǎng)流動(dòng)特性、動(dòng)力特性以及壓力脈動(dòng)特性的研究,最終得出機(jī)組MGV裝置協(xié)聯(lián)特性性能的內(nèi)在規(guī)律。本文主要研究?jī)?nèi)容及成果如下:(1)對(duì)水泵水輪機(jī)機(jī)組啟動(dòng)過(guò)程中不同工況點(diǎn)的研究發(fā)現(xiàn),主要引起啟動(dòng)過(guò)程中機(jī)組振動(dòng)的原因是由于活動(dòng)導(dǎo)葉開度較小,導(dǎo)致流過(guò)活動(dòng)導(dǎo)葉內(nèi)側(cè)流面產(chǎn)生附著渦,在活動(dòng)導(dǎo)葉內(nèi)側(cè)尾段有渦脫落的現(xiàn)象,使漩渦進(jìn)入無(wú)葉區(qū),使其流動(dòng)復(fù)雜化。且流體通過(guò)活動(dòng)導(dǎo)葉時(shí)相對(duì)速度與絕對(duì)速度間夾角減小,產(chǎn)生滑移現(xiàn)象,使流體進(jìn)入轉(zhuǎn)輪的流速降低從而導(dǎo)致對(duì)轉(zhuǎn)輪沖撞作用加大,增加了流體的水力損失。(2)無(wú)葉區(qū)壓力脈動(dòng)頻率與葉頻保持一致,活動(dòng)導(dǎo)葉后轉(zhuǎn)輪前的無(wú)葉內(nèi)流區(qū)域的壓力脈動(dòng)與轉(zhuǎn)輪旋轉(zhuǎn)所引起的動(dòng)靜干涉有很大關(guān)系。對(duì)于機(jī)組啟動(dòng)過(guò)程中不同工況的壓力脈動(dòng)頻率,第一主頻與第二主頻的幅值隨著流量的增大而減小,且在同一工況下各個(gè)監(jiān)測(cè)點(diǎn)主頻幅值變化程度相似。(3)通過(guò)對(duì)水泵水輪機(jī)加裝MGV裝置后無(wú)葉區(qū)壓力脈動(dòng)幅值變化的研究發(fā)現(xiàn),MGV裝置對(duì)機(jī)組的穩(wěn)定性有一定的影響,在其他同步導(dǎo)葉開度開至16mm ((?)0=32.6%,其中(?)0為相對(duì)開度,定義為該活動(dòng)導(dǎo)葉開度與最大活動(dòng)導(dǎo)葉開度的比值),MGV裝置預(yù)開活動(dòng)導(dǎo)葉至24mm ((?)0=48.9%)時(shí)對(duì)機(jī)組振動(dòng)具有減緩作用。當(dāng)機(jī)組其他同步導(dǎo)葉開度分別開至19mm((?)0=38.7%),MGV裝置導(dǎo)葉開度為24mm時(shí)對(duì)機(jī)組振動(dòng)影響較小。當(dāng)其他同步導(dǎo)葉開度開至22mm((?)0=44.8%),MGV裝置導(dǎo)葉開度為33mm((?)0=67.3%)時(shí)機(jī)組無(wú)葉區(qū)壓力脈動(dòng)幅值相對(duì)較小。(4)通過(guò)對(duì)機(jī)組的內(nèi)流特性與壓力脈動(dòng)特性研究,發(fā)現(xiàn)當(dāng)機(jī)組啟動(dòng)時(shí)MGV裝置的活動(dòng)導(dǎo)葉預(yù)開至24mm,待水輪機(jī)進(jìn)入額定轉(zhuǎn)速且轉(zhuǎn)速保持穩(wěn)定之后,關(guān)至與其他同步導(dǎo)葉相同開度。此協(xié)聯(lián)策略可以使機(jī)組在啟動(dòng)過(guò)程中產(chǎn)生振動(dòng)最小化,從而保證機(jī)組的穩(wěn)定運(yùn)行。
[Abstract]:With the increase of installed capacity of pumped storage power station, a higher requirement is put forward for the stable operation of pump turbine, the core component of the power station. However, in the process of start-up and load rejection, the unit can easily enter the characteristic region of "S" curve, and the running state of the unit in this area is very unstable, which is easy to cause difficulties in connection to the grid. Although it is often used to improve the "S" characteristic of the unit by adding misaligned guide vanes (asynchronous guide vane) at present, the synchronous guide vane and the asynchronous guide vane are not cooperatively connected during the transition of the unit, which results in the increase of the unit vibration and the decrease of the operation stability. Therefore, through the study of the flow field characteristics, dynamic characteristics and pressure pulsation characteristics of the pump turbine, the inherent law of the coconnection characteristic of the MGV unit is obtained. The main research contents and results of this paper are as follows: (1) the research on different working conditions of water pump turbine units during start-up shows that the main cause of unit vibration during start-up is the small opening of the active guide vane. The phenomenon of vortex shedding in the inner tail of the active guide vane leads to the vortex flowing through the inner flow surface of the active guide vane, which makes the vortex enter the vaneless region and complicate the flow. And the angle between the relative velocity and the absolute velocity decreases when the fluid passes through the moving guide vane, which results in the slip phenomenon, which reduces the velocity of the fluid entering the runner, resulting in the increase of the impact on the runner. The hydraulic loss of fluid is increased. 2) the frequency of pressure pulsation in the vaneless region is consistent with the frequency of the blade. The pressure pulsation in the impeller flow region in front of the moving guide vane is closely related to the dynamic and static interference caused by the rotation of the runner. For the pressure pulsation frequency of different working conditions during the start-up of the unit, the amplitude of the first main frequency and the second main frequency decrease with the increase of the flow rate. Under the same condition, the main frequency amplitude of each monitoring point is similar. (3) through the study of the pressure fluctuation amplitude change in the leafless area after the pump turbine is installed with MGV device, it is found that the MGV device has a certain influence on the stability of the unit. When the other synchronous guide vane is opened to 16mm, the relative opening is defined as the ratio of the active guide vane opening to the maximum active guide vane opening, and the moving guide vane is preopened to 48.9g / 24mm. The vibration of the unit can be alleviated when it is defined as the ratio of the active guide vane opening degree to the maximum active guide vane opening degree (MGV device is the ratio of the active guide vane opening to the maximum active guide vane opening degree). When the opening degree of other synchronous guide vane of the unit is 19mm and 38.7 respectively, the effect on the vibration of the unit is less when the guide vane opening of the MGV unit is 24mm. When other synchronous guide vane openings reach 22mm and 44.8mm, when the guide vane opening of the MGV unit is 33mm / 67.3mm), the amplitude of pressure pulsation in the vaneless area of the unit is relatively small. (4) by studying the internal flow characteristics and the pressure pulsation characteristics of the unit, It is found that the active guide vane of the MGV unit is preoperated to 24mm when the unit is started, and when the turbine enters the rated speed and the speed remains stable, it is turned off to the same opening degree as the other synchronous guide vane. The cocoupling strategy can minimize the vibration of the unit during start-up and ensure the stable operation of the unit.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TV136
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李琪飛;蔣雷;李仁年;權(quán)輝;譚海燕;;水泵水輪機(jī)導(dǎo)葉開啟瞬態(tài)過(guò)程數(shù)值分析[J];蘭州理工大學(xué)學(xué)報(bào);2015年06期
2 李仁年;譚海燕;李琪飛;韓偉;蔣雷;;低水頭下水泵水輪機(jī)水輪機(jī)工況壓力脈動(dòng)研究[J];水力發(fā)電學(xué)報(bào);2015年08期
3 李琪飛;蔣雷;李仁年;權(quán)輝;;水泵水輪機(jī)反水泵工況區(qū)壓力脈動(dòng)特性分析[J];水利學(xué)報(bào);2015年03期
4 李君;王磊;廖偉麗;;可逆式水泵水輪機(jī)“S”形區(qū)域內(nèi)部流場(chǎng)特性分析[J];農(nóng)業(yè)工程學(xué)報(bào);2014年15期
5 李仁年;劉殿興;董志強(qiáng);魏顯著;;水泵水輪機(jī)“S”形區(qū)全流道數(shù)值模擬[J];排灌機(jī)械工程學(xué)報(bào);2013年05期
6 劉竹青;孫卉;肖若富;劉偉超;;水泵水輪機(jī)“S”特性及其性能改善[J];水力發(fā)電學(xué)報(bào);2013年02期
7 孫躍昆;劉樹紅;劉錦濤;吳玉林;左志剛;;水泵水輪機(jī)開機(jī)過(guò)程壓力脈動(dòng)的試驗(yàn)研究[J];工程熱物理學(xué)報(bào);2012年08期
8 肖若富;孫卉;劉偉超;王福軍;;預(yù)開導(dǎo)葉下水泵水輪機(jī)S特性及其壓力脈動(dòng)分析[J];機(jī)械工程學(xué)報(bào);2012年08期
9 ;DETACHED EDDY SIMULATION OF HYDRAULIC CHARACTERISTICS ALONG THE SIDE-WALL AFTER A NEW ARRANGEMENT-SCHEME OF THE SUDDEN LATERAL ENLARGEMENT AND THE VERTICAL DROP[J];Journal of Hydrodynamics;2011年05期
10 劉錦濤;郭雷;劉世國(guó);王樂(lè)勤;焦磊;;水泵水輪機(jī)反水泵工況的特性研究[J];水電能源科學(xué);2011年08期
相關(guān)博士學(xué)位論文 前3條
1 紀(jì)興英;水泵水輪機(jī)“S”特性預(yù)測(cè)方法研究[D];武漢大學(xué);2013年
2 邵衛(wèi)云;帶MGV裝置的抽水蓄能過(guò)渡過(guò)程仿真及其應(yīng)用[D];浙江大學(xué);2004年
3 周凌九;水輪機(jī)轉(zhuǎn)輪流場(chǎng)計(jì)算及性能預(yù)測(cè)[D];中國(guó)農(nóng)業(yè)大學(xué);2000年
相關(guān)碩士學(xué)位論文 前3條
1 徐海華;不同步導(dǎo)葉對(duì)水泵水輪機(jī)三維流動(dòng)特性影響數(shù)值分析[D];清華大學(xué);2012年
2 王煥茂;混流式水泵水輪機(jī)駝峰區(qū)數(shù)值模擬及試驗(yàn)研究[D];華中科技大學(xué);2009年
3 黃賢榮;水電站過(guò)渡過(guò)程計(jì)算中的若干問(wèn)題研究[D];河海大學(xué);2006年
,本文編號(hào):2039413
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/2039413.html